Bayes Networks
General Information
This page contains information about the lecture "Bayes Networks" (in German "Bayes-Netze") that is held in winter term 2019/2020 by Prof. Dr. Rudolf Kruse. This page is updated during the course.
Announcement
No exercises on 22.1.20, they are moved to 29.1.20
There will be no lecture on 30.1.2020.
The written exam will takes place at 11.02.20 , 11h-13h, room HS 5
Topics
- Representation of uncertain information
- Bayesian networks
- Markov networks
- Evidence propagation in probabilistic networks
- Learning of probabilistic networks
- Revision of probabilistic networks
- Causal networks
- Decision Graphs
- Hidden Markov Models
Schedule and Rooms
Weekday | Time | Room | Begin | ||
---|---|---|---|---|---|
Lecture | Thursday | 11.15-12.45 | G29-307 | 17.10.2019 | english |
Exercise | Wednesday | 13.15-14.45 | G29-K037 | 23.10.2019 | english |
Exercise | Wednesday | 15.15-16.45 | G29-E037 | 23.10.2019 | english |
Every student who wants to participate in the exercise must register her-/himself via the FIN Registration Service for the exercise. If you have any trouble with verifying the SSL certificate Jens Elkner could help you. While doing the registration, we kindly ask you to give an e-mail address of which incoming e-mail you check regularly.
Lecturers
If you have questions regarding the lecture or exercise, please contact (via e-mail if possible) one of the persons named below.
- Prof. Dr. Rudolf Kruse, rudolf.kruse@ovgu.de
- Alexander Dockhorn, alexander.dockhorn@ovgu.de
Conditions for Certificates (Scheine) and Exams
Certificate (Übungsschein): There are assignment sheets published every week. Assignments the solutions of which you want to present in the next exercise lecture have to be ticked beforehand on a votation sheet that is handed our prior to every exercise lecture. If ticked, you may be asked to present your solution in front of class. The solutions need not necessarily be completely correct, however, it should become obvious that you treated the assignment thoroughly. You are granted the certificate (Schein), if (and only if) you
- ticked at least two thirds of the assignments,
- presented at least two times a solution during the exercise, and
- pass the exam
Exam: If you intend to finish the course with an exam, your are required to meet the certificate conditions. There will be a written exam after the curse. You can use your own not graphical and not programmable calculator.
Prerequisites
You should have background knowledge on fundamentals of computer science such as algorithms, data structures etc. Also, insights into probability theory are highly recommended.
Slides
Note that the script may be subject to change (which will be stated in the news section above) during the course, i.e. page numbers may change.
# | Topic | Files | Announcements and Changelog |
Administration | The lecture will start on October 17th, the first lecture will be held in G29-307 | ||
1 | Rule-Based Systems | Updated on 17.10. added two business slides of up-to-date business cases | |
2 | Probability Foundations | Updated on 08.11., reformulations of some texts | |
3 | Decomposition | ||
4 | Separation Concepts | ||
5 | Probabilistic Graphical Models | Appended a few slides | |
6 | Inference in Belief Trees | ||
7 | Clique Tree Representations | removed a comma of slide 280 | |
8 | Propagation in Clique Trees | ||
9 | Manual Building of Bayes Networks | ||
10 | Building Bayes Networks: Parameter Learning | ||
11 | Learning Decision Trees | ||
12 | Building Bayes Networks: Structure Learning | ||
13 | Revision | ||
14 | Decision Graphs | not relevant for exam | |
15 | Hidden Markov Models | not relevant for exam | |
16 | Causal Networks | not relevant for exam, will be updated |
Assignment Sheets
The assignment sheets will be published weekly at this location.
Due dates may be adjusted according to the lectures progress.
ID | Topic | Due Date | Exercise Sheet |
Wednesday | |||
1 | Combinatorics, Certainty Factors, Probabilities | 23.10. | |
2 | Conditional Probabilities, Independencies | 06.11. | |
3 | Separation Concepts | 13.11. | |
4 | Decomposition | 20.11. | |
5 | Semi-Graphoid and Graphoid Axioms | 04.12. | |
6 | Bayesian Networks and Propagation | 04.12. | |
7 | Propagation and Construction of Clique Trees | 11.12. | |
8 | Clique Tree Propagation | 18.12. | |
9 | Learning from Data | 08.01. | |
10 | Properties of Undirected Graphs / Exam Prep | 15.01. |
Additional Material
Feel free to check out the following supplementary material that augment the lecture and exercise.
- Data Mining with Graphical Models dmwgm.pdf
- Illustration of Simple Tree Propagation
- Illustration of Joint Tree Propagation
- Example Network used in the clique propagation lesson.
- Blood group determination of Danish Jersey cattle in the F-blood group system
- Introductory slides about belief functions (Source: Thierry Denoeux)
Software
Here you find links to programs with for learning and using Bayesian networks.
- Induction of Network Structures
- HUGIN Lite (Evidence Propagation)
References
- Computational Intelligence - A Methodological Introduction
Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., Steinbrecher, M.
Springer-Verlag London 2016 - Graphical Models - Representations for Learning, Reasoning and Data Mining, 2nd Edition.
C. Borgelt, M. Steinbrecher und R. Kruse.
J. Wiley & Sons, Chichester, United Kingdom 2009 - Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis
Uffe B. Kjærulff, Anders L. Madsen
Springer Science+Business Media New York 2013