Self-organized Manufacturing

In one our projects, called MOSAIK, which is funded by BMBF, we work on self-organization algorithms in modern manufacturing systems. We aim to develop algorithms which can easily and autonomously adapt to changing circumstances given a set of workers, machines, products, etc. Imagine a shopfloor which is producing a certain item using several collaborating robots. An item like this could be all kinds of things, for example a sewing machine. Now the interesting part is what happens when we want to change some specifications of the sewing machine, or maybe we even want to produce a completely different item at some point. Maybe we want to produce sewing machines for one month, then masks for COVID-regulations for one month, then both in parallel. Can we achieve this by using the same robots as before? Changing the products implies changing the whole task sequence and many aspects of the shopfloor itself. Which robot moves to which location and performs which task? How do the robots communicate their individual goals and how can they coordinate their actions? How do they detect good strategies and can avoid bad ones? All of these questions and many more are at the heart of the MOSAIK project. In the following four videos you observe very abstarct simulations of the 2 to 20 robots moving in an environment performing several tasks without any collisions:

 

2 and 5 robots

 

10 and 20 robots

Together with our project partners, we just published a paper about this: 

  • Victor Charpenay, Daniel Schraudner, Thomas Seidelmann, Torsten Spieldenner, Jens Weise, Rene Schubotz,Sanaz Mostaghim, Andreas Harth
  • MOSAIK: A Formal Model for Self-Organizing Manufacturing Systems
  • Accepted at IEEE Transactions on Pervasive Computing, Special Issue on Pervasive Manufacturing, 2020

 

 

 

Last Modification: 16.09.2021 - Contact Person: Webmaster