

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 6

Fig. 5. Outline of the Weighted Optimization Framework.

Algorithm 1 WOF(Z,A,G,ψ)
Input: Problem Z, Optimization Algorithm A, Grouping

Mechanism G, Transformation Function ψ
Output: Solution population S

1: Initialization
2: S ← Random initial population for Z
3: repeat
4: S ← A(Z, S, t1) // Optimize Z with Algorithm A for

t1 evaluations, using S as a starting population.
5: {~x′1, .., ~x′q} ← Selection of q solutions based on Crowd-

ing Distance from the first non-dominated front of S
6: for k = 1 to q do
7: Wk ← WeightingOptimization(~x′k, Z,A,G, ψ) // Al-

gorithm 2
8: end for
9: S ← updatePopulation(W1, ..,Wq, S) // Algorithm 3

10: until δ · total#Evaluations used
11: S ← A(Z, S) // Optimize Z with Algorithm A, using S

as starting population, until all evaluations are used.
12: return FirstNonDominatedFront(S)

result of this low-dimensional optimization step is a population
Wk of weights that optimizes the objective function values
based on the values of the originally chosen solution ~x′k. This
whole process of problem transformation and optimization is
carried out q times, giving us a set of q weight populations
{W1, ...,Wq}.

These obtained weights are then assigned to the original
solution population (Line 9 in Algorithm 1) in the following
way, as also shown in detail in Algorithm 3: In order to
save computational resources, from every Wk, we select one
member (with the largest Crowding Distance from the first
non-dominated front) and apply its values to every solution
in S. By doing so, we obtain q sets of new solutions S′k
(k = 1, ..., q). To update the original population, we combine
the obtained new solution sets with S and perform a non-
dominated sorting mechanism as used in NSGA-II on the set
S ∪ {S′k}k=1,...,q. Duplicate solutions found in this union set
are removed prior to the non-dominated sorting, as they would
deteriorate diversity. The non-dominated sorting procedure in
this step also ensures that worse solutions found in the current

Algorithm 2 WeightingOptimization(~x′k, Z,A,G, ψ)
Input: Solution ~x′k, Problem Z, Optimization Algorithm A,

Grouping Mechanism G, Transformation Function ψ
Output: Population of weights Wk

1: Initialization
2: Divide n variables into γ groups // See Subsection V-A
3: Zk~x0 ← Build a transformed problem with γ decision

variables (weights) from Z, ~x′k, G and ψ
4: Wk ← Random population of weights for Zk~x0

5: Wk ← A(Zk~x0,Wk, t2) // Optimize Zk~x0 with Algorithm A
for t2 evaluations, using Wk as a starting population.

6: return Wk

Algorithm 3 UpdatePopulation(W1, ...,Wq, S)
Input: Weight populations W1, ...,Wq , Solution population S
Output: Solution population S

1: for k = 1 to q do
2: wk ← Select one individual from Wk

3: S′k ← Apply wk to population S
4: end for
5: S ← Perform non-dominated sorting on S ∪ {S′k}k=1,..,q

6: return S

iteration (for example due to a suboptimal choice of one of the
~x′k) will not be further regarded in the upcoming steps. After
that, the main loop starts again and we return to a normal
optimization step to alter the variable values independently of
each other.

In addition to applying one individual of each Wk to the
population S, it is also possible to add all members of each Wk

to the population update process. These solutions have already
been evaluated in the optimization of Zk~x0 and can therefore be
included in the process. Depending on the population size used
when optimizing Zk~x0, this might improve the results slightly in
favor of a slightly longer computation time. However, previous
experiments showed, that by doing so the improvement in
performance is, in most cases, negligible.

The alternation of the main loop of WOF (Lines 3 -
10 in Algorithm 1) is only repeated until the first termina-
tion condition is met. More precisely, the optimization of
variables and weights will only take place during the first

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 7

P

x1

x2

~x0
1

~x0
2

~x0
q

Fig. 6. q optimization steps in WOF. Diamonds: Original population. Circles:
Achieved solutions of the q transformed problems.

δ · total#Evaluations, where δ ∈ [0, 1] defines how many of
the total function evaluations are spent for this phase. After
that, the algorithm will use the normal optimization without
weights for the second half of the optimization process (Line
11 in Algorithm 1).

The reason for this alternation is that the transformation of
the problem might result in a directed search where only a
certain area of the Pareto-front can be reached. Early experi-
ments showed that using the weight optimization throughout
the whole search process results in an overall loss of diversity.
In general, the efficiency of WOF is most probably higher in
the initial phase of an optimization process than in the final
phase. Towards the end of the search, the Pareto-front might
already be approximated to a certain extent. When WOF is
used in this situation, the grouped alternation might deteriorate
optimal values of one variable in favor of another. In this phase
of the search, classical (ungrouped) evolutionary operators
can make finer adjustments to the decision variable values
independently of each other and therefore slowly approach
the optimal values for each single variable.

C. The Parameter q and Choice of ~x′

Now we take a look at how to choose the ~x′ for the weighted
optimization. In the case of just one objective function the
selection is rather straightforward, as we can determine the
best and worst solutions. Unfortunately we do not have a
total order on the solutions in multi-objective optimization,
so choosing one ~x′ might result in a great acceleration of the
optimization process towards (a part of) the Pareto-front, but
in exchange, we might loose the diversity of the population
(see Figure 4 (d)). To deal with this problem, we perform
multiple independent weighting optimizations using different
~x′k, k = 1, ..., q. It might be advisable to specify q as m or
larger (where m is the number of objectives), and decide to
make the selection of ~x′ based on a diversity indicator. In
this way we can choose multiple solutions that lie “far” from
each other in the objective space, to hopefully cover different
areas of the decision space with the weighting optimization
as shown in Figure 6. In this work, we select the best q
solutions by applying the Crowding Distance metric to the first
non-dominated front of the current population of the original
problem. It is also possible to use other selection criteria in
this step. In our case, we have obtained better results using
Crowding Distance compared to a random selection (refer to

Tables 17 - 19 and Figures 42 - 45 in the supplementary file).
For problems with many objectives it may be promising to use
reference-line based approaches.

V. GROUPING AND TRANSFORMATION FUNCTIONS

In this section we will describe four different mechanisms
for grouping variables and three transformation functions that
will be used later in the experiments.

A. Grouping Mechanisms

Grouping strategies usually aim to put those variables into
the same group that interact strongly with each other (in
non-separable optimization problems). Here we briefly explain
different grouping methods that are used in this work to
examine the influence of a good grouping strategy. While
the first three methods are rather simple and do not use any
information about the objective functions, the DG incorporates
an intelligent mechanism based on problem analysis. We use
this method for comparison, although it has been developed
for single-objective optimization.

a) Random Grouping: Random grouping forms a fixed
number γ of equal-sized groups and assigns each variable
randomly to each of these groups.

b) Linear Grouping: Linear grouping assigns all n vari-
ables to a fixed number γ of groups in natural order. This
means, the first n

γ variables of the optimization problem are
assigned to the first group and so on. This corresponds to the
situation seen in Equation 4.

c) Ordered Grouping: The ordered grouping mechanism
ranks the decision variables of the selected solution by their
absolute values. This means that all variables are sorted based
on their current absolute values and the n

γ variables with the
smallest values are assigned to the first group, the next n

γ to
the second group and so forth.

d) Differential Grouping: DG was developed in 2014 by
Omidvar et al. [23] and used in single-objective optimization
with CC. It aims to detect variable interaction prior to the
optimization of the problem. The number of groups as well as
their sizes are set automatically by the DG algorithm. In short,
DG compares the amount of change in the objective function
in reaction to a change in a variable xi before and after another
variable xh is changed. DG answers the following question:
When changing the value of xi, does the amount of change
in f(~x) remains the same regardless of the value of another
variable xh? If this is true, the variables xi and xh seem not to
interact with each other, so they can be separated into different
groups. Else, they seem to interact, so they are assigned to
the same group. Two drawbacks must be mentioned when
using this approach here: (1) The DG algorithm can become
computationally expensive as analyzed in [23]. Assuming the
problem contains a number γ = n

l evenly sized groups
with l variables each, the number of function evaluations
consumed is in O(n

2

l). This means for a fully separable
problem using n = 2000 decision variables, DG requires
n2 = 4, 000, 000 function evaluations to perform the grouping.
Given that our experiments in Section VI only use 100, 000
function evaluations for the whole optimization process, this

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 8

is little practicable. (2) As mentioned, the DG algorithm was
developed for single-objective problems. It was not designed to
take multiple objective functions into account and, as a result,
is not directly applicable to multi-objective problems. To make
it applicable to multi-objective optimization, in this work only
one of the objective functions (the first one) is considered
in the DG algorithm. The implications and possibly different
outcomes when using other than the first objective function
might be studied in a future work.

The four grouping mechanisms differ in the required amount
of computational effort in each generation. The linear grouping
does not change during the process and therefore does not
require recomputation in each generation. The same holds for
DG, which is precomputed before the optimization starts and
not changed during the search. On the other hand, the random
grouping and the ordered grouping mechanisms are updated
every time a problem transformation is carried out. In the
former, a new random assignment to the γ groups is computed,
in the latter the variables of each chosen x′k are ordered in each
problem transformation step.

B. Transformation Functions

In the following we will describe three different transfor-
mation functions ψ(~w, ~x′) and examine their advantages and
disadvantages. We assume the variables were devided into γ
groups g1, ..., gγ prior to the transformation. Let g(xi) = gj be
the respective group xi is assigned to (i.e. the set of variables
in the same group as xi) and wj the respective weight used
to transform the values of gj .

a) ψ1 - Product Transformation: In Subsection IV-A we
used a basic function ψ(~w, ~x′) := (w1x

′
1, ..., wγx

′
n). Broken

down to a single element, this equation results in the simple
expression xi,new = wj · xi,old for each variable. Therefore
the first transformation function is as follows:

xi,new = wj · xi,old
wj ∈ [0, 2]

(5)

A disadvantage of ψ1 is that we do not expect it to deal
well with variable domains that involve both positive and
negative values (since a multiplication with positive weights
can only obtain positive or negative new values respectively).
Additionally, the progress that can be made by altering one
weight variable wj is determined by the absolute value of
xi. The genetic operators used to alter the wj are naturally
limited in the amount of change per iteration, while at the
same time we also need to apply some sort of domain to
the wj during the optimization process. That means, if the
variable xi has a domain of xi ∈ [0, 10], and the variable wj
has a domain of wj ∈ [0, 2], an absolute value of xi = 0.1
will give the optimization algorithm only a maximum chance
to explore the original search space in the interval [0, 0.2],
while a value of xi = 8 will result in a search that covers
at least the whole domain of xi. Since we do not know
the optimal variable values beforehand, the search should not
be dependent on absolute values. Therefore, we propose the
following transformation function:

b) ψ2 - p-Value Transformation: This method is intended
to uncouple the relationship between absolute variable values
and the reachable domain space of the original variable.

xi,new = xi,old + p · (xi,max − xi,min) · (wj − 1.0)

wj ∈ [0, 2]

p ∈ [0, 1]

(6)

Using this function, the value of xi is always altered within
a certain range (defined by p) around its original value, where
xi,min and xi,max are the lower and upper bounds of the
variable xi. The values of the wj are bound to the interval [0, 2]
to ensure that variable values during optimization are always
positive. As can be seen in the first line of the equation, these
values are translated into [−1, 1], which describes a change of
values in one or the other direction around the original value.
The actual maximum and minimum amounts of change are
set by the parameter p, so that the domain of the wj does not
have to be altered. For instance, setting p = 0.2, the value of
xi is altered by 20% of the width of the variable’s domain,
centered around the original value xi,old.

c) ψ3 - Interval-Intersection Transformation: This func-
tion follows an approach suggested in [18] for single-objective
optimization. We include it in this work especially for the
comparison on the ZDT functions. This is because the previ-
ous two functions need a kind of repair-mechanism in case
the result of the transformation function exceeds a variables
domain. In this case, both ψ1 and ψ2 set the value of the
variable to the respective boundary. However, this might be
of advantage for problems like the ZDT benchmarks, since
their optimal values are extremal values and can be obtained
by such repairing. To provide a fair comparison with other
algorithms on the ZDT problems in Subsection VI-D, we use
the following transformation function ψ3:

xi,new = wj · xi,old
wj ∈ [min

xh∈g(xi)
(xh,min/xh), max

xh∈g(xi)
(xh,max/xh)] (7)

where xh,min and xh,max are the lower and upper bounds of
the variable xh. The application of the weight value follows
the same multiplication equation as in ψ1, only the domains
of the weights for each group are changed. For each variable
in a group, the maximum (minimum) weight value that can be
used without exceeding the domain borders is calculated. The
upper- and lower-bounds of the variables wi are set based on
the highest (lowest) of these possible values over all variables
in the respective group. This interval [wj,min, wj,max] can be
seen as the intersection interval of all possible minimum and
maximum values defined by each variable in the group.

VI. EVALUATION

The benchmark problems used in this work are WFG1-9 [4],
DTLZ1-7 [6], ZDT1-4 and 6 [5], and the ten unconstrained
problems of the CEC2009 competition on multi-objective
optimization (denoted as UF1-10) [7]. With the exception of
the CCGDE3 algorithm, we rely on the jMetal Framework for
Java, version 4.5 [30] for the implementation of the algorithms.
The source codes of the mentioned problems are included

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 9

in the framework. For the comparison with the CCGDE3
algorithm, we obtained the original code from the website of
the authors 1. The C++ implementations of the UF problems
were taken from the original competitions resources. The
original C++ implementation of the WFG group was used,
and the DTLZ C++ implementation were taken from the C++
adaptation of jMetal.

The algorithms used in this evaluation are the following:
• SMPSO, which represents a state-of-the-art swarm opti-

mizer.
• NSGA-II, which is a widely known multi-objective evo-

lutionary algorithm.
• GDE3, which uses differential evolution.
• WOF-SMPSO, WOF-NSGA-II, WOF-GDE3, which are

WOF-enhanced versions of the previous ones, i.e., the re-
spective algorithm (SMPSO, NSGA-II, GDE3) is used as
an optimizer within our proposed framework to optimize
the weights and variables.

• CCGDE3 is used as another large-scale optimizer. Pub-
lished in 2013, it is a recent algorithm designed specifi-
cally for multi-objective many-variable problems.

The performance indicator used in this paper is the hyper-
volume indicator [31]. It can be used to measure both conver-
gence and diversity of an obtained solution set. When reporting
hypervolume values in this work, relative values are used,
i.e. the obtained hypervolume divided by the hypervolume
of the true Pareto-front. The reference point for calculating
the hypervolume in all instances is obtained from a sample
of the true Pareto-front of each problem by multiplying the
nadir-point of the sample by 2.0 in each dimension. For each
algorithm and each tested problem, we perform 51 independent
runs. All experiments are conducted with 2 and 3 objectives
wherever possible, and use decision variables from 40 up
to 5000 depending on the respective experiment. For testing
the statistical significance of the differences between indicator
values (which are not likely to follow a normal distribution)
we use the Mann-Whitney U statistical test. We indicate a
difference as significant for a value of p < 0.01.

A. General Parameter Settings

Many of the experiments in the following sections will use
identical parameter settings. In the following sections, only
settings that differ from those given here will be explained.

The maximum number of function evaluations is set to
100, 000 in all experiments. In all WOF algorithms, the
number t1 of evaluations for each optimization of the original
problem Z is set to 1000, and the number of evaluations
for the transformed problem t2 is 500. The parameter q, the
number of repetitions of the weight optimization (therefore
also the number of chosen solutions ~x′) is set to 3, and the
number of groups (γ) is set to 4 in the WOF algorithms and
the CCGDE3. The ordered grouping mechanism is used in
all experiments and the transformation function is ψ2 with
p = 0.2. The parameter δ, which defines the evaluations spent
for the first phase (Lines 3 to 10 in Algorithm 1) is set to 0.5.

1https://www.cs.cinvestav.mx/∼EVOCINV/software/CCLSMO/CCLSMO.
html

A dynamic version where the termination of the first phase
is linked to the progress of the search might be possible too,
however, this task is left for future work. The sensitivity of
WOF to different values of δ is reported later in Subsection
VI-G.

SMPSO and NSGA-II use polynomial mutation with a
probability of 1/n (with n being the number of decision
variables) and a distribution index of 20.0. The NSGA-II
and its WOF-enhanced version use an SBX crossover with
a crossover probability of 0.9 and a distribution index of 20.0.
In GDE3, CCGDE3 and WOF-GDE3, the parameters F and
CR are both set to 0.5.

The size of the populations as well as the archives is set to
100 for all algorithms. In WOF, the optimization of the weights
takes place with a population size of 10 due to the reduced size
of the search space. The CCGDE3 uses an internal population
size of 40, but creates a larger population with up to 160
solutions when the algorithm returns. We wanted to keep the
parameters of the CCGDE3 the same as in the original paper,
so the same setting is used here, with the exception that only
the best 100 solutions are returned to ensure fairness to the
other methods. The number of generations per single group in
CCGDE3 also follows the original publication and is set to 1.

B. Performance on Various Benchmarks

In this part we will compare the performance of all al-
gorithms on the mentioned benchmarks. All test problem
instances use n = 1000 decision variables in this experiment.
For the WFG problems, they are split into 250 position-related
and 750 distance-related variables.

The median relative hypervolume values and interquartile
ranges (IQR) can be seen in Table I. Best performance is indi-
cated by a bold font. An asterisk is used to indicate whether the
result is significantly worse than the respective best algorithm’s
performance for each problem. For readability, values equal to
0.0 are displayed as dashes.

We see that the WOF algorithms perform on average very
well. For almost all of the tested problems, at least one version
of the WOF algorithms performs significantly better than all
the non-WOF methods. In the following, some interesting
observations will be pointed out for the different problem
families.

1) WFG: In the WFG problems none of the classic algo-
rithms nor CCGDE3 can obtain a best hypervolume value.
Moreover, all of the results are significantly worse than the
respective best algorithm. In Table I, the best results are
obtained by WOF-SMPSO for almost all test problems ex-
cept for WFG1 with 2 and 3 objectives and WFG5 with 2
objectives (for which no significant difference between WOF-
SMPSO and WFG-GDE3 is obtained). Additionally we want
to point out the good performance on both, separable and
non-separable problems. Decomposition methods often face
difficulties when the problems are non-separable, since the
interaction between the variables asks for a suitable grouping
of the variables. The problems WFG2, 3, 6, 8 and 9 are non-
separable. Still we observe that WOF can achieve the same
superior performance as on the separable problems, which

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 10

TABLE I
MEDIAN RELATIVE HYPERVOLUME VALUES OF VARIOUS BENCHMARK PROBLEMS FOR n = 1000 DECISION VARIABLES. BEST PERFORMANCE IS SHOWN

IN BOLD FONT. AN ASTERISK INDICATES STATISTICAL SIGNIFICANCE COMPARED TO THE RESPECTIVE BEST METHOD.

m CCGDE3 GDE3 NSGAII SMPSO WOF-GDE3 WOF-NSGAII WOF-SMPSO
2 DTLZ1 — (—) * — (—) * — (—) * 0.642949 (—) — (—) * — (—) * 0.642949 (—)

2 DTLZ2 — (—) * — (—) * — (—) * 0.998909 (5.10E-5) 0.995145 (1.49E-3) * 0.997587 (4.00E-4) * 0.998694 (1.26E-4) *
2 DTLZ3 — (—) * — (—) * — (—) * 0.520072 (—) — (—) * — (—) * 0.520072 (—)

2 DTLZ4 — (—) * — (—) * — (—) * 0.998900 (5.00E-5) 0.987029 (1.94E-2) * 0.996243 (7.80E-4) * 0.998700 (1.49E-4) *
2 DTLZ5 — (—) * — (—) * — (—) * 0.999348 (5.83E-5) 0.995736 (2.90E-3) * 0.998003 (4.86E-4) * 0.999100 (1.36E-4) *
2 DTLZ6 — (—) * — (—) * — (—) * — (—) * 0.999011 (1.45E-4) * 0.999150 (6.17E-5) 0.999149 (3.75E-1)

2 DTLZ7 0.698002 (7.78E-3) * 0.380034 (1.40E-2) * 0.442085 (2.36E-2) * 0.070975 (5.03E-2) * 0.798233 (1.01E-5) * 0.798236 (1.51E-5) * 0.798270 (6.21E-6)

2 WFG1 0.368023 (9.71E-3) * 0.575510 (8.54E-3) * 0.314626 (2.34E-3) * 0.590658 (7.06E-3) * 0.652464 (1.66E-2) 0.646211 (4.40E-3) * 0.645470 (1.11E-2)

2 WFG2 0.619606 (5.85E-3) * 0.688903 (4.22E-3) * 0.667313 (9.52E-3) * 0.736841 (2.53E-2) * 0.862312 (3.16E-2) * 0.800874 (1.41E-2) * 0.983370 (6.56E-3)

2 WFG3 0.543414 (6.03E-3) * 0.683368 (5.56E-3) * 0.612655 (7.43E-3) * 0.594265 (2.81E-2) * 0.807946 (8.23E-3) * 0.807269 (6.12E-3) * 0.855820 (4.67E-3)

2 WFG4 0.507776 (6.72E-3) * 0.630822 (1.46E-2) * 0.621814 (9.71E-3) * 0.843217 (4.46E-3) * 0.870188 (2.07E-2) * 0.856543 (1.47E-2) * 0.975442 (1.26E-2)

2 WFG5 0.541706 (7.00E-3) * 0.668053 (2.06E-2) * 0.587745 (1.11E-2) * 0.803472 (4.10E-3) * 0.940453 (7.84E-2) 0.878879 (9.23E-2) * 0.946467 (2.30E-2)

2 WFG6 0.400922 (8.92E-3) * 0.495129 (1.14E-2) * 0.576546 (8.92E-3) * 0.969041 (4.28E-3) * 0.906795 (4.52E-2) * 0.834530 (5.97E-2) * 0.998855 (2.55E-4)

2 WFG7 0.524232 (1.18E-2) * 0.696964 (1.52E-2) * 0.648534 (8.83E-3) * 0.697714 (1.82E-2) * 0.857582 (4.17E-3) * 0.862129 (5.15E-3) * 0.962463 (1.35E-2)

2 WFG8 0.466575 (5.19E-3) * 0.667567 (6.59E-3) * 0.551133 (1.01E-2) * 0.515858 (7.58E-4) * 0.810636 (1.97E-2) * 0.815991 (2.46E-2) * 0.885010 (1.91E-2)

2 WFG9 0.473511 (1.08E-2) * 0.511297 (9.30E-3) * 0.621036 (3.40E-2) * 0.894743 (9.31E-3) * 0.935509 (1.96E-2) * 0.931595 (2.27E-2) * 0.962831 (1.47E-2)

2 UF1 0.768177 (2.06E-2) * 0.673944 (3.26E-2) * 0.709649 (6.09E-2) * 0.214618 (8.11E-3) * 0.834999 (6.02E-3) * 0.901471 (5.07E-2) 0.784401 (6.12E-3) *
2 UF2 0.576268 (1.56E-2) * 0.673588 (9.42E-3) * 0.804848 (9.14E-3) * 0.870498 (1.07E-3) * 0.927186 (2.69E-3) * 0.911687 (1.94E-3) * 0.932005 (1.41E-3)

2 UF3 0.517992 (4.94E-3) * 0.536167 (1.09E-2) * 0.675722 (7.55E-3) * 0.628483 (2.77E-3) * 0.982468 (1.48E-3) * 0.980885 (3.36E-3) * 0.989193 (1.14E-3)

2 UF4 0.832407 (7.82E-3) * 0.904059 (4.44E-3) * 0.855195 (4.12E-3) * 0.890782 (1.98E-3) * 0.908135 (3.42E-2) * 0.906701 (2.29E-2) * 0.915155 (1.53E-2)

2 UF5 — (—) * — (—) * — (—) * — (—) * — (—) * 0.199880 (9.99E-2) — (—) *
2 UF6 0.407692 (4.75E-2) * 0.076527 (4.21E-2) * 0.217237 (1.08E-1) * — (—) * 0.503085 (2.10E-2) * 0.701907 (6.42E-2) 0.256224 (3.93E-2) *
2 UF7 0.606616 (1.86E-2) * 0.709033 (1.38E-2) * 0.725638 (1.48E-1) * 0.190892 (1.17E-2) * 0.842589 (7.20E-3) * 0.898994 (3.27E-2) 0.777471 (8.81E-3) *
2 ZDT1 0.854970 (8.69E-3) * 0.548507 (2.05E-2) * 0.568226 (4.09E-2) * 0.112146 (3.88E-2) * 0.998415 (1.55E-4) * 0.998462 (1.13E-4) * 0.998609 (1.21E-4)

2 ZDT2 0.758925 (2.05E-2) * 0.109237 (4.02E-2) * 0.110764 (5.31E-2) * — (—) * 0.998239 (1.50E-4) * 0.998270 (1.49E-4) * 0.998476 (1.74E-4)

2 ZDT3 0.815271 (6.62E-2) * 0.512281 (1.82E-2) * 0.621983 (2.71E-2) * 0.217650 (3.62E-2) * 0.999277 (7.55E-5) * 0.999326 (5.44E-5) * 0.999439 (5.62E-5)

2 ZDT4 — (—) * — (—) * — (—) * 0.998789 (4.13E-3) — (—) * — (—) * 0.998615 (1.10E-4) *
2 ZDT6 — (—) * — (—) * — (—) * — (—) * 0.998498 (1.69E-4) * 0.998639 (4.69E-5) * 0.998766 (7.89E-5)

3 DTLZ1 — (—) * — (—) * — (—) * 0.587705 (1.48E-1) — (—) * — (—) * 0.587705 (5.87E-1) *
3 DTLZ2 — (—) * — (—) * — (—) * 0.981398 (2.04E-3) 0.781343 (6.49E-2) * 0.976170 (3.24E-3) * 0.979655 (3.22E-3) *
3 DTLZ3 — (—) * — (—) * — (—) * 0.390379 (—) — (—) * — (—) * — (3.90E-1) *
3 DTLZ4 — (—) * — (—) * — (—) * 1.004301 (1.61E-3) 0.485969 (3.05E-1) * 0.976607 (1.14E-2) * 1.001749 (5.63E-3) *
3 DTLZ5 — (—) * — (—) * — (—) * 0.998575 (1.93E-4) 0.004036 (6.93E-2) * 0.982175 (5.72E-3) * 0.998159 (4.52E-4) *
3 DTLZ6 — (—) * — (—) * — (—) * — (—) * 0.999158 (2.53E-4) * 0.999316 (1.58E-4) * 0.999504 (1.14E-4)

3 DTLZ7 0.279526 (2.50E-1) * 0.219555 (2.66E-2) * 0.477192 (2.50E-2) * 0.002625 (6.41E-3) * 0.989964 (3.10E-3) 0.989889 (2.55E-3) 0.979407 (5.84E-3) *
3 WFG1 0.416198 (8.10E-3) * 0.570543 (3.66E-3) * 0.289553 (3.82E-3) * 0.579919 (4.74E-3) * 0.604212 (1.12E-2) 0.590271 (5.22E-3) * 0.602670 (7.99E-3)

3 WFG2 0.552173 (5.18E-3) * 0.617007 (4.76E-3) * 0.655834 (5.87E-3) * 0.740452 (5.07E-3) * 0.868322 (1.10E-2) * 0.865291 (4.93E-2) * 0.956430 (1.13E-2)

3 WFG3 0.243353 (1.84E-2) * 0.476209 (9.00E-3) * 0.502668 (1.84E-2) * 0.564899 (1.61E-2) * 0.765131 (3.90E-2) * 0.804832 (2.64E-2) * 0.948554 (1.29E-2)

3 WFG4 0.357544 (7.68E-3) * 0.538518 (1.00E-2) * 0.509696 (1.05E-2) * 0.719935 (5.03E-3) * 0.806799 (2.02E-2) * 0.806814 (3.26E-2) * 0.885714 (3.72E-2)

3 WFG5 0.390448 (7.58E-3) * 0.601179 (1.16E-2) * 0.460440 (8.12E-3) * 0.678253 (5.92E-3) * 0.796938 (4.47E-2) * 0.793484 (3.09E-2) * 0.835976 (2.78E-2)

3 WFG6 0.316011 (1.03E-2) * 0.445367 (1.01E-2) * 0.451270 (1.29E-2) * 0.874272 (6.95E-3) * 0.845404 (1.03E-1) * 0.741775 (8.18E-2) * 0.967580 (1.31E-2)

3 WFG7 0.387126 (7.60E-3) * 0.567569 (8.38E-3) * 0.552353 (6.13E-3) * 0.662307 (1.42E-2) * 0.796639 (1.45E-2) * 0.800744 (1.63E-2) * 0.856828 (2.75E-2)

3 WFG8 0.327917 (6.15E-3) * 0.536088 (8.10E-3) * 0.453376 (7.62E-3) * 0.547306 (1.91E-2) * 0.739925 (2.35E-2) * 0.752790 (2.84E-2) * 0.812080 (2.39E-2)

3 WFG9 0.287493 (5.26E-3) * 0.369398 (1.82E-2) * 0.492735 (1.32E-2) * 0.824473 (2.25E-2) * 0.869764 (3.33E-2) * 0.841607 (2.40E-2) * 0.903643 (3.07E-2)

3 UF8 — (—) * 0.087400 (2.11E-2) * 0.296347 (5.62E-2) * 0.857926 (6.39E-4) 0.855352 (1.53E-3) * 0.857292 (8.50E-4) * 0.858015 (4.85E-4)

3 UF9 0.002653 (8.61E-3) * 0.062455 (1.54E-2) * 0.353288 (5.55E-2) * 0.555565 (2.99E-3) * 0.694577 (1.01E-2) 0.642928 (6.99E-2) * 0.641168 (7.83E-3) *
3 UF10 — (—) * — (—) * — (—) * 0.854390 (3.84E-3) 0.778501 (1.46E-1) * 0.690878 (1.10E-1) * 0.855156 (2.40E-3)

lets us assume that separability doesn’t affect the WOF’s
performance much. It must be noted that the used ordered
grouping mechanism is likely to separate the position- and
distance-related variables into different groups. This lets WOF
optimize them separately and results in a good performance
of the non-separable problems. However, further experiments
using random grouping also showed a superior performance
of the WOF algorithms on the separable and non-separable
WFG problems.

2) ZDT: In Table I, the best performance on the ZDT
problems is obtained by WOF-algorithms. Only in the ZDT4,
where all but the PSO-based algorithms fail to obtain any
hypervolume value, the original SMPSO performs a little
better than the WOF-SMPSO. This difference however might
not be of great importance, since both methods achieve a
relative hypervolume of more than 99.8%.

3) CEC 2009 Competition: The results on the CEC2009
competition basically follow the same pattern. The WOF-
SMPSO and the WOF-NSGA-II perform best and in almost
all instances significantly better than the non-WOF algorithms.

The only two exceptions are the UF8 and UF10 problems
where the original SMPSO is on a par with its WOF version.
That is, SMPSO is not significantly outperformed by its WOF
version for UF8 and UF10.

4) DTLZ: On the DTLZ problems, the WOF versions of
GDE3 and NSGA-II perform significantly better than their
respective original parts. Also, all WOF algorithms perform
better than the CCGDE3 algorithm. For most instances of
DTLZ1-5 in Table I, the best results are obtained by the
SMPSO. On these problems, WOF does not further improve
the performance of the SMPSO algorithm in the same way
as it does of NSGA-II and GDE3, mainly due to a good
performance of the original SMPSO in the first place. Al-
though the results of the SMPSO are better than the WOF-
SMPSO on these five problems, we also see that the results
of WOF-SMPSO and SMPSO do not actually differ to a
great extend, even though these differences are marked as
statistically significant. The obtained relative hypervolumes
range in the same order of magnitude, as both algorithms
perform very similar to each other. This indicates that the

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 11

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0
Evaluations ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 H

y
p
e
rv

o
lu

m
e

CCGDE3

GDE3

NSGAII

SMPSO

WOF-GDE3

WOF-NSGAII

WOF-SMPSO

(a) Convergence of rel. hypervolume

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
f1

1

0

1

2

3

4

5

f 2

CCGDE3

GDE3

NSGAII

SMPSO

WOF-GDE3

WOF-NSGAII

WOF-SMPSO

True Front

(b) Solution sets and Pareto-front

Fig. 7. Convergence and obtained solution sets on the WFG9 problem with
n = 2000 variables.

SMPSO already performs well (to a certain degree) on the
large-scale DTLZ1-5 problems, thus the WOF version of it
does not deliver the same amount of improvement as for
the other algorithms. At the same time, we can observe that
the performance of the NSGA-II and GDE3 methods are
improved significantly, as they perform poor without WOF, but
much better when WOF is used. For the DTLZ6 and DTLZ7
problems, we observe the same superior performance of all
WOF algorithms as for the other problem families in Table
I. We can conclude for the DTLZ problems that the WOF
does improve the performance of previously bad-performing
algorithms (NSGA-II, GDE3) in the same way as in the case
of the UF and WFG benchmarks, and does on the other hand
deliver comparable results to the original algorithm (SMPSO),
if this one does already deal well with the large-scale problem.

A special consideration goes to the CCGDE3, since it is an
algorithm that was specifically designed to work well on large-
scale problems. In the experiments performed in this section,
it could not perform of the same level with any of the WOF
algorithms on any on the test problems. The comparison using
the original settings of the CCGDE3 in Subsection VI-D will
support this in further detail.

Concerning the diversity of solutions, Figures 7 - 12 and
also Figures 14 - 41 of the supplement material illustrate
that the obtained solutions are well-spread for several test
problems. Nevertheless, the final populations obtained by our
approach do not always cover the entire Pareto-fronts. On the
other hand, we observe much better convergence performance
compared to the other algorithms. This observation clearly
shows the difficulty to find a balance between convergence
and diversity for large-scale multi-objective problems. Our ap-
proach seems to be somewhat convergence-oriented. Diversity
improvement is an important future research topic including
the use of uniformly specified reference lines instead of the
Crowding Distance for selecting solutions (see Subsection
IV-C).

C. Scaling the Number of Variables

Table I gave some detailed results for n = 1000 variables.
In addition to the analysis that we gave for each of the test
problems until now, we examined how these results change

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0
Evaluations ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 H

y
p
e
rv

o
lu

m
e

CCGDE3

GDE3

NSGAII

SMPSO

WOF-GDE3

WOF-NSGAII

WOF-SMPSO

(a) Convergence of rel. hypervolume

0.5 0.0 0.5 1.0 1.5 2.0 2.5
f1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

f 2

CCGDE3

GDE3

NSGAII

SMPSO

WOF-GDE3

WOF-NSGAII

WOF-SMPSO

True Front

(b) Solution sets and Pareto-front

Fig. 8. Convergence and obtained solution sets on the CEC2009 UF1 problem
with n = 2000 variables.

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0
Evaluations ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 H

y
p
e
rv

o
lu

m
e

CCGDE3

GDE3

NSGAII

SMPSO

WOF-GDE3

WOF-NSGAII

WOF-SMPSO

(a) Convergence of rel. hypervolume

5 0 5 10 15 20 25 30
f1

5

0

5

10

15

20

25

30

f 2

CCGDE3

GDE3

NSGAII

SMPSO

WOF-GDE3

WOF-NSGAII

WOF-SMPSO

True Front

(b) Solution sets and Pareto-front

Fig. 9. Convergence and obtained solution sets on the DTLZ2 problem with
n = 1000 variables.

with the dimension of the search space. For each setting
of n ∈ {40, 80, 200, 600, 1000, 2000} we perform the same
experiment as in the previous section. Due to limited space,
Tables 15 and 16 of the supplement material to this article give
an overview over these experiments. In these tables, for every
combination of problem and number of variables we list the
algorithm that achieved the highest as well as second highest
median hypervolume values. An asterisk is used to indicate
whether the respective values are significantly better than the
next-best performance.

As expected, for small numbers of variables, the original
optimization methods SMPSO, NSGA-II and GDE3 work
best on most problems, as seen in Tables 15 and 16 of the
supplements in the experiments with n = 40 and n = 80.
The exception is the WFG problem family, where the WOF
versions already work better than the original algorithms
for these relatively small problems instances, although the
differences are not always statistically significant in these
cases.

When the number of variables is increased, we observe
a superior performance of the WOF-methods, especially the
WOF-SMPSO. In the 2-objective experiments (Table 15 of the
supplements), for n = 600, n = 1000 (which corresponds to
the results in Table I) and n = 2000, the WOF algorithms
are placed best for all WFG, ZDT and UF problems, with the

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 12

0. 0 0. 5 1. 0 1. 5 2. 0
Evaluations ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 H

y
p
e
rv

o
lu

m
e

CCGDE3

GDE3

WOF-GDE3

(a) Convergence of rel. hypervolume

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f 2

CCGDE3

GDE3

WOF-GDE3

True Front

(b) Solution sets and Pareto-front

Fig. 10. Comparison with CCGDE3: Convergence and obtained solution sets
on the ZDT1 problem with n = 500 variables.

exception of ZDT4.
In Figures 7, 8 and 9 we show the convergence rate and

obtained solution sets on three problem instances. The runs
shown are the ones that achieved the median hypervolume
of each respective algorithm among all 51 runs. Figure 7
shows the WFG9 problem with 2000 variables. We observe
not only a superior performance in terms of closeness to
the Pareto-front as shown in the previous tables, but also a
very fast convergence rate especially in the beginning of the
optimization. The same can be seen in Figure 8 for the UF1
problem with 2000 variables. All three WOF algorithms obtain
a much closer approximation of the Pareto-front. Additionally
the WOF algorithms only need a very small share of the total
function evaluation to reach this approximation. Finally in
Figure 9 we observe the DTLZ2 performance for n = 1000
variables. As seen before, the WOF does not perform in the
same superior way when used with the SMPSO algorithm
on the DTLZ problems. However, the convergence as seen
in Figure 9 (a) shows that all 3 WOF algorithms do still
outperform all but the SMPSO algorithm in terms of solution
quality as well as convergence rate.

In conclusion, we observe that for any large-scale op-
timization problem, the WOF methods can outperform the
traditional GDE3 and NSGA-II methods as well as the large-
scale method CCGDE3 significantly. The performance of the
SMPSO lies on par with the WOF-SMPSO for some of the
DTLZ problems, but the WOF method also increases its
performance significantly on the other benchmark families.
Overall, the results of the WOF do not only show a superior
solution quality, but also a very fast convergence rate.

D. Comparison with CCGDE3

As described above, CC has been used frequently for large-
scale optimization, especially for single-objective problems. A
few works also used CC for multi-objective optimization and
performed experiments using the ZDT [5] suite. One of the
most recent advances is the CCGDE3 algorithm presented in
[11], where the CC concept is applied to the GDE3 algorithm.

In the previous subsection, we observe in Table 15 of the
supplements that for only one small-scale problem instance
of the UF5 problem with n = 80 variables and 2 objectives

TABLE II
MEDIAN RELATIVE HYPERVOLUME VALUES AND IQRS OF THE ZDT

PROBLEMS WITH DIFFERENT NUMBERS OF VARIABLES. SETTINGS USED
ARE THE SAME AS IN [11]. BEST PERFORMANCE IS SHOWN IN BOLD

FONT. AN ASTERISK INDICATES STATISTICAL SIGNIFICANCE COMPARED
TO THE RESPECTIVE BEST METHOD.

CCGDE3 GDE3 WOF-GDE3
n = 200

ZDT1 0.996298 (3.91E-3) * 0.998319 (6.82E-5) 0.998346 (2.13E-4)

ZDT2 0.983671 (9.13E-3) * 0.997598 (1.88E-4) * 0.998198 (3.25E-4)

ZDT3 0.958335 (6.09E-2) * 0.999220 (3.31E-5) 0.999239 (1.18E-4)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 0.982064 (8.55E-3) * 0.858491 (6.72E-3) * 0.998698 (2.58E-4)

n = 500
ZDT1 0.995791 (3.54E-3) * 0.976890 (1.99E-3) * 0.998392 (1.53E-4)

ZDT2 0.985697 (1.01E-2) * 0.960381 (2.26E-3) * 0.998217 (2.03E-4)

ZDT3 0.929806 (6.71E-2) * 0.951782 (4.13E-3) * 0.999252 (1.04E-4)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 0.862895 (1.13E-2) * — (—) * 0.998573 (3.30E-4)

n = 1000
ZDT1 0.984426 (4.46E-3) * 0.783685 (1.90E-2) * 0.998382 (2.19E-4)

ZDT2 0.966051 (1.46E-2) * 0.549738 (3.50E-2) * 0.998204 (3.98E-1)

ZDT3 0.922063 (6.41E-2) * 0.696589 (1.63E-2) * 0.999267 (1.54E-4)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 0.453370 (5.22E-2) * — (—) * 0.998545 (2.91E-4)

n = 2000
ZDT1 0.932251 (6.91E-3) * 0.371685 (2.40E-2) * 0.998410 (2.05E-4)

ZDT2 0.892224 (1.77E-2) * — (—) * 0.998161 (3.98E-1)

ZDT3 0.761271 (2.04E-1) * 0.384368 (1.15E-2) * 0.999264 (8.57E-5)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 — (—) * — (—) * 0.998367 (3.86E-4)

n = 3000
ZDT1 0.838997 (9.71E-3) * 0.193257 (2.31E-2) * 0.998411 (1.58E-4)

ZDT2 0.774619 (3.05E-2) * — (—) * 0.998220 (3.98E-1)

ZDT3 0.575661 (1.58E-1) * 0.262717 (1.33E-2) * 0.999242 (1.31E-4)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 — (—) * — (—) * 0.998292 (6.89E-4)

n = 4000
ZDT1 0.720947 (1.54E-2) * 0.104674 (1.66E-2) * 0.998407 (2.20E-4)

ZDT2 0.633076 (2.28E-2) — (—) * 0.998246 (3.98E-1)

ZDT3 0.472919 (1.52E-1) * 0.199042 (9.78E-3) * 0.999227 (1.16E-4)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 — (—) * — (—) * 0.998138 (6.87E-4)

n = 5000
ZDT1 0.614349 (2.17E-2) * 0.047964 (1.06E-2) * 0.998428 (1.44E-4)

ZDT2 0.486880 (2.45E-2) * — (—) * 0.998159 (3.98E-1)

ZDT3 0.384726 (1.61E-1) * 0.160194 (8.56E-3) * 0.999234 (1.18E-4)

ZDT4 — (—) * — (—) * 0.545522 (—)

ZDT6 — (—) * — (—) * 0.998120 (1.00E-3)

0. 0 0. 5 1. 0 1. 5 2. 0
Evaluations ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 H

y
p
e
rv

o
lu

m
e

CCGDE3

GDE3

WOF-GDE3

(a) Convergence of rel. hypervolume

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f 2

CCGDE3

GDE3

WOF-GDE3

True Front

(b) Solution sets and Pareto-front

Fig. 11. Comparison with CCGDE3: Convergence and obtained solution sets
on the ZDT1 problem with n = 2000 variables.

CCGDE3 could win against the other methods. However,
except for this 80-variable UF5 problem, CCGDE3 is not
performing best for any test problem in Table I and Tables
15 and 16 of the supplement material.

In this section we will further compare the performance
of the WOF with CCGDE3. As experimental benchmark, the

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 13

0. 0 0. 5 1. 0 1. 5 2. 0
Evaluations ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 H

y
p
e
rv

o
lu

m
e

CCGDE3

GDE3

WOF-GDE3

(a) Convergence of rel. hypervolume

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
f1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

f 2

CCGDE3

GDE3

WOF-GDE3

True Front

(b) Solution sets and Pareto-front

Fig. 12. Comparison with CCGDE3: Convergence and obtained solution sets
on the ZDT1 problem with n = 5000 variables.

ZDT problems 1 to 4 and 6 were used with the numbers of
decision variables ranging from 200 to 5000. To compare the
WOF with the CCGDE3 method, we perform all experiments
using the same configurations and parameter settings as in
the original work [11]. We compare the performance of the
original GDE3 algorithm, CCGDE3, and WOF-GDE3 using
the same test problems (ZDT1-3 and 6) that were used in [11],
as well as the ZDT4 problem.

The parameter settings differ from Subsection VI-A in the
following: The number of groups γ is set to 2 in CC and WOF.
The grouping mechanism used for both is a random grouping
of the variables. Furthermore, since the optimal solutions of
the ZDT problems lie on the boundaries of the variables do-
mains, for fair comparison we use the transformation function
ψ3 as described in Subsection V-B. In this way, the need for a
repair mechanism is almost eliminated. When infeasible values
are created using the obtained weights on other solutions in
the population, the respective variable values are set to random
values instead of the extremal ones.

The results of this experiment can be seen in Table II. Even
for rather small problem instances (n = 200) the WOF-GDE3
can outperform the two other methods. Only for the ZDT1
and ZDT2 problems, the original GDE3 algorithm does not
perform significantly worse.

With increasing the number of variables we see that the
original GDE3 cannot find a good approximation of the Pareto-
front for any problem. The CCGDE3 starts to outperform the
original GDE3 when the number of variables grows larger.
However, for all problem instances with n ≥ 500, the WOF
algorithm clearly obtains the highest median hypervolume in
all test problems with statistical significance (with the one
exception of ZDT2 with 4000 variables). This shows that for
a large number of decision variables the WOF algorithm is
clearly superior to the CC framework on the ZDT benchmarks.
This adds to the results seen in Subsections VI-B and VI-C,
where we saw that the superiority of WOF is already present
for much smaller values of n when other problems than the
ZDT are used.

Another aspect that is notable is once again the convergence
rate of the WOF algorithm. The difference in performance for
the ZDT1 problem is shown in Figures 10 - 12. We plotted

TABLE III
COMPARISON OF GROUPING SCHEMES AND TRANSFORMATION

FUNCTIONS. SHOWN ARE THE NUMBERS OF TIMES THE RESPECTIVE
COMBINATION ACHIEVES THE BEST / SECOND BEST / WORST MEDIAN REL.

HYPERVOLUME OVER ALL TESTED PROBLEMS.

Transformation function
ψ1 ψ2 ψ3

Grouping

Random 1 / 1 / 8 3 / 1 / 2 1 / 1 / 7
Ordered 4 / 4 / 3 3 / 6 / 0 2 / 4 / 4

Linear 4 / 2 / 2 2 / 2 / 2 2 / 4 / 3
Differential 4 / 1 / 3 7 / 0 / 1 2 / 5 / 1

for each algorithm the respective run that achieved the median
hypervolume of all 51 runs for n = 500, n = 2000 and
n = 5000 decision variables. Additionally, the convergence
rate is plotted next to it. In these figures one can clearly see
that the WOF algorithm was able to obtain an almost perfect
approximation of the Pareto-front with a good diversity in
all cases. In contrast, the original GDE3 and the CCGDE3
are not able to obtain any good approximation of the Pareto-
optimal solutions for n > 500. In all cases, we also see that
the convergence rate is extremely high for the WOF-GDE3. In
all three plots, it reaches a relative hypervolume of over 99%
already after less than 12% of the total function evaluations,
no matter how many variables are used.

A special consideration goes to the ZDT4 problem. It is the
only tested problem that allows negative variable values, which
limits the reachable search space of the WOF algorithm. Since
we used the ψ3 transformation function, as explained before
the weights can only map positive to positive and negative
to negative variable values. As a result, a part of the search
space might not be reachable in the weight optimization steps
of WOF. Nevertheless, the performance of the WOF on the
ZDT4 problem is significantly higher that that of the CCGDE3
for any tested number of variables. While the CCGDE3 does
not obtain any hypervolume value with the used reference
point, the WOF always obtains the same hypervolume value
(in all runs, therefore the IQR is non-existent). A closer look
in the results showed that in fact the WOF-GDE3 always finds
exactly one (same) solution that is part of the true Pareto-front
in every run. Therefore, its performance can be regarded as
extremely reliable for ZDT4, while in contrast no diversity
exists. This however, is not a direct weakness of the WOF-
method, because we saw that the WOF-SMPSO performed
well on the ZDT4 problem before (see Table I).

E. Comparison with MOEA/DVA

In this part, we compare the performance of our WOF
method with MOEA/DVA [12]2. This approach focusses on
finding optimal groupings of the variables by dividing them
into diversity-related and convergence-related variables. In
comparison with our proposed method, some interesting re-
sults can be observed. The tables and figures supporting
these can be found in the supplement material to this article.
We compared the performance of the best found WOF-
version from the previous experiments, the WOF-SMPSO,

2Codes are obtained from the original authors’ webpage: http://web.xidian.
edu.cn/home/fliu/lunwen.html

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 14

with MOEA/DVA on the UF1 - UF10 as well as the 2-
objective WFG1 - 5 and WFG7 and the 3-objective WFG1-5
problems using 1000 decision variables in all instances.

The experiments in this subsection differ from the previous
ones in only one aspect which is the number of function
evaluations used. The MOEA/DVA uses the majority of its
total functions evaluations in the preliminary variable grouping
method, before the actual optimization starts. In our exper-
iments, the grouping mechanism of MOEA/DVA for 1000-
variable problems consumed around 9, 000, 000 evaluations.
Given that all previous experiments with WOF in this article
only use 100,000 evaluations in total, the comparison might
not be fair in this case. For this reason we decided to
provide all algorithms a total of 10,000,000 evaluations for
the experiments in this section. To compare, the original article
of MOEA/DVA [12] used between 1,200,000 and 3,000,000
evaluations in their experiments with the 200-variable prob-
lems. The parameters of the MOEA/DVA were the same as
found in the original MOEA/DVA paper with the exception of
adjusting the population sizes to the same values as the ones
of SMPSO and WOF-SMPSO to ensure a fair comparison
using the hypervolume indicator. Furthermore, the distribution
indexes of crossover and mutation are set to the same values
as described in Subsection VI-A. No other changes were made
to the original sourcecode provided by the authors of [12].

The obtained median hypervolume and IQR values are
shown in Tables 13 and 14 in the supplement materials of
this article, and the solution sets and convergence plots for
the 2-objective problems can be found in Figures 1 to 13
in the supplement material. The results show that on the (2-
objective) UF1-7 and the UF9 problems, the MOEA/DVA
performs better than the WOF-SMPSO. On the other hand,
the WOF-SMPSO significantly outperforms MOEA/DVA on
all tested WFG problem instances with 2 and 3 objectives and
the UF10 problem. Partly this difference results from a slightly
worse performance of the WOF algorithm on the UF problems,
however we also observed a large decrease in the performance
of MOEA/DVA on the WFG problems in comparison to UF.

A second observation regards the convergence rate. In
contrast to the MOEA/DVA, which uses 90% of the total
evaluations for an initial grouping phase, the WOF-SMPSO
does immediately start with the optimization process and can
therefore deliver solution sets of reasonable quality after just
a fraction of the total evaluations. In all used WFG2, 4, 5,
and 7 as well as UF3 instances the WOF-SMPSO provides
a hypervolume value of over 0.95 after just 10% (1,000,000)
of the total function evaluations, and in the WFG1 and 3 it
obtains a hypervolume very close to the final value after this
amount. For all other problems we observe a more gradual
convergence, however, the advantage remains that even with
a very small amount of evaluations, we can already obtain
results of certain quality using the WOF-SMPSO (as also seen
in Subsection VI-B where we used only 100,000 evaluations).
In contrast, while the MOEA/DVA outperforms WOF on most
of the UF problems, these results can only be obtained after a
large computational effort, since no solution sets are produced
by MOEA/DVA during its grouping phase. As a conclusion,
there are some problems where the MOEA/DVA outperforms

WOF-SMPSO, but with the disadvantage of using a much
larger computational budget, while on some other problems
the WOF-SMPSO performs significantly better with a much
smaller computation effort.

F. Influence of Grouping and Transformation Methods

In this subsection we will examine the effects of dif-
ferent grouping mechanisms and transformation functions.
We implement the four grouping mechanisms and the three
transformation functions explained in Section V. The WOF-
SMPSO algorithm is used for comparison. For each combina-
tion of a grouping mechanism and a transformation function
we perform the same experiment as in Subsection VI-B on
the WFG1-4, DTLZ1-4 and ZDT problems with 2 and 3
objectives. As we are only interested in the efficiency of the
mechanisms, the DG was precomputed for each problem using
an ε-value of 10−10, i.e. the consumed evaluations were not
counted to those of the optimization process.

Table III lists the number of problems (out of the 21 test
problems) for which the respective combination performed
best, second best and worst. We observe that the algorithms
using the p-value transformation (ψ2) and the multiplication
transformation ψ1 perform on average better than the ψ3

transformation function. Comparing the grouping mechanisms,
we see that the random grouping seems to perform worse than
the other mechanisms. The best combination was obtained
when using the DG method together with the p-value (ψ2)
transformation.

We take a closer look at the performance of DG. As a
single-objective grouping strategy, it is based on only the
first objective in our work. Therefore, we did not expect
its high performance for the multi-objective problems. If we
look closer for instance at the ZDT problems, which are all
separable, we observe that all their variables are in the same
(single) group (since all separable variables by default are
grouped together by the original DG algorithm). This results
in the optimization of just one weight value for all variables.
For all i = 2, ..., n, reducing the value of a variable xi in
a ZDT problem is improving solution quality in the second
objective component. Therefore, we can expect a speed-up in
convergence by using just one single weight.

The better performance of the linear grouping compared to
the random one (in ψ1 and ψ3) can be explained by taking a
look at the variables of the WFG problems. Since out of the
1000 variables the first quarter of them are position-related
variables, a linear grouping with γ = 4 groups results in a
splitting of position and distance variables. This might be
a benefit compared to the random grouping and therefore
leads to a better overall performance. Our observations further
show that DG, although just regarding one objective, can
approximately divide position and distance variables of some
of the WFG problems into different groups.

Overall, no single combination is clearly superior in the
majority of the 21 test problems used in this experiment.
These observations show that the choice of a good grouping
mechanism can strongly affect the performance of the WOF
method. Finding a single mechanism that fits all problems

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 15

might be a difficult task. It can be expected however, that by
developing an advanced multi-objective grouping mechanism,
the performance can be further improved.

G. Sensitivity Analysis
In this part we take a closer look at the different parameters

of the WOF and analyze the sensitivity to certain changes in
these parameter values. The tested parameters are (1) q, the
number of chosen solutions ~x′k, (2) γ, the number of groups
used in the ordered grouping mechanism, (3) δ, the share of
the total function evaluations used for the weight optimization,
(4) p, the value used in the ψ2 transformation function, (5)
t1, the amount of evaluations used for each optimization
of the original problem (Line 4 in Algorithm 1) and (6)
t2, the amount of evaluations used for each optimization of
the transformed problem (Line 5 in Algorithm 2). For each
parameter we tested five different values including values
higher and lower than those described previously in Subsection
VI-A. All other parameters remain unchanged. The sensitivity
experiments are done with the WOF-SMPSO and the WOF-
NSGA-II algorithms using the UF, WFG, DTLZ and ZDT
benchmark functions with two and three objectives, where
applicable, and 21 independent runs are performed for each
configuration. The detailed results can be found in Tables 1 to
12 of the supplement materials of this article.

For the parameters t1 and t2 we observe a low sensitivity in
general. While the performance varies when ranging t1 from
400 to 2000 and t2 from 100 to 900, the differences in the
hypervolume are in most cases not statistically significant for
both tested algorithms. For the value of p in the transformation
function, in most problem instances a significantly lower
performance was observed for a very small value of 0.05 in
both algorithms. For the WOF-SMPSO, performance remained
stable for values between 0.2 and 0.5, while the NSGA-II
achieved on average better results with higher values of p. The
value of δ was altered between 0.1 and 1.0, and we observed
an average increase in performance for higher values of δ,
especially when the NSGA-II is used within our framework.
On the other hand the results when using the SMPSO also
show, that the optimal value for δ might depend on the used
optimizer in WOF as well as the problem to be optimized.
Future work on the framework should therefore include an
automatic detection of the starting point for the traditional opti-
mization phase. For the parameter γ, the number of groups, we
observe that the WOF-SMPSO and WOF-NSGA-II perform
significantly worse if the values of γ are too high (γ = 50) or
too low (γ = 2). These observations however, were made for
the described p-value transformation (ψ2), which we do not
claim to be a perfect grouping mechanism. A more suitable
grouping mechanism (e.g. from [12] or [29]) could be used
within WOF to obtain more reliable results, since the optimal
number of groups might depend on each specific problem.
Lastly, for the parameter q, the number of chosen solutions,
differences in the performance were observed by varying q,
but most of these were not significant with the exception of
choosing extreme values (q = 1 or q = 8). This result was to
be expected as a different number of q can be used to balance
between convergence and diversity.

VII. CONCLUSION

In this work we explained and examined the idea proposed
in [3] in detail. We introduce the use of a framework for multi-
objective optimization that is able to improve the performance
of multi-objective optimization algorithms for many-variable
problems. The proposed Weighted Optimization Framework
(WOF) is not making use of any coevolution as many other
approaches in this area and is designed to employ another
multi-objective optimization algorithm while transforming the
problem during the optimization. We explained the underlying
problem transformation mechanism and the algorithm in detail
and examined its implications for the optimization process.
Different grouping and transformation functions were intro-
duced. Through experimental evaluation we showed signifi-
cant improvements of the performance on various benchmark
problems compared to classical optimization methods as well
as existing large-scale approaches. The best performance was
achieved when the SMPSO algorithm was used in the proposed
framework. Overall, the WOF showed significant improve-
ments in solution quality and convergence rate for almost all
tested benchmark problems.

Future work might involve the implementation of better
strategies for choosing the used solutions ~x′k for problem trans-
formations. An important issue in future research might also be
the development of more advanced multi-objective grouping
mechanisms, since current intelligent grouping methods are
mostly single-objective oriented. Furthermore, since the q
different transformed problems are optimized independently,
this research can easily be extended to a parallel version in
the future.

ACKNOWLEDGMENT

This work was partly funded by the German Academic
Exchange Service (DAAD).

REFERENCES

[1] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-
scale global continues optimization: A survey,” Information Sciences,
vol. 295, pp. 407–428, 2015.

[2] S. K. Goh, K. C. Tan, A. Al-Mamun, and H. A. Abbass, “Evolutionary
big optimization (BigOpt) of signals,” in IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2015, pp. 3332–3339.

[3] H. Zille, H. Ishibuchi, Y. Nojima, and S. Mostaghim, “Weighted
optimization framework for large-scale multi-objective optimization,”
in Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference (GECCO) Companion. ACM, 2016, pp. 83–84.

[4] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506,
2006.

[5] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: Empirical results,” Evolutionary Computation,
vol. 8, no. 2, pp. 173–195, 2000.

[6] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in IEEE Congress on Evolutionary
Computation (CEC), vol. 1, 2002, pp. 825–830.

[7] Q. Zhang, A. Zhou, and S. Zhao, “Multiobjective optimization test
instances for the CEC 2009 special session and competition,” University
of Essex, 2008.

[8] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

1089-778X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2017.2704782, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 2017 16

[9] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello,
F. Luna, and E. Alba, “SMPSO: A new PSO-based metaheuristic for
multi-objective optimization,” in IEEE Symposium on Computational
Intelligence in Multi-criteria Decision-making. IEEE, 2009, pp. 66–73.

[10] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of
generalized differential evolution,” in IEEE Congress on Evolutionary
Computation (CEC), vol. 1. IEEE, 2005, pp. 443–450.

[11] L. M. Antonio and C. A. Coello Coello, “Use of cooperative coevolution
for solving large scale multiobjective optimization problems,” in IEEE
Congress on Evolutionary Computation (CEC), 2013, pp. 2758–2765.

[12] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, “A
multiobjective evolutionary algorithm based on decision variable analy-
ses for multiobjective optimization problems with large-scale variables,”
IEEE Transactions on Evolutionary Computation, vol. 20, no. 2, pp.
275–298, 2016.

[13] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp.
191–204, 2015.

[14] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Parallel Problem Solving from Nature PPSN
III, ser. Lecture Notes in Computer Science, Y. Davidor, H.-P. Schwefel,
and R. Männer, Eds. Springer Berlin Heidelberg, 1994, vol. 866, pp.
249–257.

[15] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary Computation,
vol. 8, no. 1, pp. 1–29, 2000.

[16] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[17] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimiza-
tion using cooperative coevolution with variable interaction learning,” in
Parallel Problem Solving from Nature, PPSN XI, ser. Lecture Notes in
Computer Science, R. Schaefer, C. Cotta, J. Kołodziej, and G. Rudolph,
Eds. Springer Berlin Heidelberg, 2010, vol. 6239, pp. 300–309.

[18] X. Li and X. Yao, “Tackling high dimensional nonseparable optimiza-
tion problems by cooperatively coevolving particle swarms,” in IEEE
Congress on Evolutionary Computation (CEC). IEEE, 2009, pp. 1546–
1553.

[19] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in IEEE Congress on Evolutionary
Computation (CEC), 2007, pp. 3523–3530.

[20] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 2, pp. 210–224, 2012.

[21] Z. Yang, J. Zhang, K. Tang, X. Yao, and A. C. Sanderson, “An
adaptive coevolutionary differential evolution algorithm for large-scale
optimization,” in IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2009, pp. 102–109.

[22] A. W. Iorio and X. Li, “A cooperative coevolutionary multiobjective
algorithm using non-dominated sorting,” in Genetic and Evolutionary
Computation Conference - GECCO, 2004, pp. 537–548.

[23] M. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with
differential grouping for large scale optimization,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.

[24] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-
scale separable continuous functions for cooperative co-evolutionary
algorithms,” in IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2014, pp. 1305–1312.

[25] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential grouping
for large scale global optimization with direct and indirect variable
interactions,” in Genetic and Evolutionary Computation Conference -
GECCO. New York, USA: ACM Press, 2015, pp. 313–320.

[26] Y. Zhang, J. Liu, M. Zhou, and Z. Jiang, “A multi-objective memetic
algorithm based on decomposition for big optimization problems,”
Memetic Computing, vol. 8, no. 1, pp. 45–61, 2016.

[27] S. Elsayed and R. Sarker, “An adaptive configuration of differential
evolution algorithms for big data,” in IEEE Congress on Evolutionary
Computation (CEC), 2015, pp. 695–702.

[28] Y. Zhang, M. Zhou, Z. Jiang, and J. Liu, “A multi-agent genetic algo-
rithm for big optimization problems,” in IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2015, pp. 703–707.

[29] X. Zhang, Y. Tian, Y. Jin, and R. Cheng, “A decision variable clustering-
based evolutionary algorithm for large-scale many-objective optimiza-
tion,” IEEE Transactions on Evolutionary Computation, 2016.

[30] J. J. Durillo and A. J. Nebro, “jMetal: A java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42,
no. 10, pp. 760–771, 2011.

[31] E. Zitzler and L. Thiele, “Multiobjective optimization using evolutionary
algorithms — a comparative case study,” Parallel Problem Solving from
Nature PPSN V, pp. 292–301, 1998.

Heiner Zille is currently working as a research
assistant and pursuing his PhD degree at the In-
stitute for Intelligent Cooperating Systems, Otto
von Guericke University Magdeburg, Germany. He
studied computer science and economics at the Karl-
sruhe Institute of Technology (KIT) in Germany
and received his B.S. and M.S. degrees in 2011
and 2014 respectively. During his studies, he spent
seven months at the Doshisha University in Kyoto
and one year at the Osaka Prefecture University
in Sakai, Japan. His research focusses on multi-

objective optimization, in particular on problems with large numbers of input
variables.

Hisao Ishibuchi (M’93-SM’10-F’14) received the
B.S. and M.S. degrees in precision mechanics from
Kyoto University, Kyoto, Japan, in 1985 and 1987,
respectively, and the Ph.D. degree in computer sci-
ence from Osaka Prefecture University, Sakai, Japan,
in 1992. Since 1987, he had been with Osaka Pre-
fecture University for 30 years. Currently, he is a
Chair Professor with the Department of Computer
Science and Engineering, Southern University of
Science Technology, Shenzhen, China. His current
research interests include fuzzy rule-based classi-

fiers, evolutionary multiobjective optimization, many-objective optimization,
and memetic algorithms. Dr. Ishibuchi was the IEEE Computational Intel-
ligence Society (CIS) Vice-President for Technical Activities from 2010 to
2013. He is an IEEE CIS AdCom Member from 2014 to 2019, an IEEE
CIS Distinguished Lecturer from 2015 to 2017, and an Editor-in-Chief of the
IEEE Computational Intelligence Magazine from 2014 to 2019. He is also
an Associate Editor for the IEEE Transactions on Evolutionary Computation,
the IEEE Transactions on Cybernetics, and the IEEE ACCESS.

Sanaz Mostaghim is a full professor of computer
science at the Otto von Guericke University Magde-
burg, Germany. She holds a PhD degree in electrical
engineering and computer science from the Univer-
sity of Paderborn, Germany. She worked as a post-
doctoral fellow at ETH Zurich in Switzerland and as
a lecturer at Karlsruhe Institute of technology (KIT),
Germany. Her research interests are in the area of
evolutionary multi-objective optimization, swarm in-
telligence, and their applications in robotics, science
and industry. She serves as an associate editor for

the IEEE Transactions on Evolutionary Computation, IEEE Transactions on
Cybernetics, IEEE Transactions on System, Man and Cybernetics: Systems
and IEEE Transactions on Emerging Topics in Computational Intelligence.

Yusuke Nojima (M’00) received the B.S. and M.S.
degrees in mechanical engineering from the Osaka
Institute of Technology, Osaka, Japan, in 1999 and
2001, respectively, and the Ph.D. degree in sys-
tem function science from Kobe University, Hyogo,
Japan, in 2004. Since 2004, he has been with Osaka
Prefecture University, Sakai, Japan, where he was
a Research Associate and is currently an Associate
Professor with the Department of Computer Science
and Intelligent Systems. His current research inter-
ests include multiobjective genetic fuzzy systems,

evolutionary multiobjective optimization, and parallel distributed data mining.
Dr. Nojima is an Associate Editor of the IEEE Computational Intelligence
Magazine.

