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Abstract. Coverage path planning (CPP) is the problem of determin-
ing a path that covers any given area and is mainly applied in the field of
robotics. To ensure efficient coverage, objectives like path length, over-
laps, and traversal time are considered. However, in certain scenarios, a
simplistic total coverage approach may not be optimal, necessitating a
trade-off strategy. This paper addresses a novel challenge in CPP: the
multi-objective weighted coverage path planning problem, where total
coverage is not strictly required but balanced against other objectives
and constraints. We present an approach to solve this problem using
evolutionary multi-objective algorithms with free-form path representa-
tions. The focus lies on comparing different path representations, ranging
from polygonal chains to Bézier curves and B-splines, to Non-Uniform
Rational B-splines (NURBs). Additionally, we incorporate an overlaid
rectangular grid for comparison with a graph-based approach.

Keywords: Multi-Objective Optimization · Coverage Path Planning ·
Free-Form · Path Representation.

1 Introduction

Nowadays, mobile robots are utilized in various domains: underwater [10,1], on
land, for example in fields [15], and in the air as unmanned aerial vehicles (UAVs).
In the latter case, they fulfill various tasks, including videography, remote sens-
ing [25], agricultural monitoring [23], and aiding in disaster scenarios such as
earthquake [6]. Despite their diverse applications, they share a common chal-
lenge: coverage path planning (CPP). These paths must cover the area of interest
while considering metrics such as path length, overlaps, curvature, and traver-
sal time, as well as application-specific constraints like no-fly zones (NFZs) and
obstacles. However, in some scenarios, a simple total coverage approach is not
sufficient. Instead, a trade-off is necessary. This happens in search and rescue
scenarios, for example, when searching for a missing person in a large field with
limited time and energy resources. In these cases, a value function can be em-
ployed to prioritize certain parts of the area. For instance, in UAV search and
rescue missions, this function could represent the probability distribution of the



2 L. Bostelmann-Arp et al.

missing person’s location. Additionally, there is a need for adaptable, free-form
paths that can adjust to any situation. Thus, arises a novel challenge: the multi-
objective weighted coverage path planning problem.

Multi-objective evolutionary algorithms (EAs) have been widely applied to
solve coverage path planning (CPP) problems. In most of these works, the area is
discretized into subregions or a set of waypoints, and the EA is used to optimize
the order of traversal. In addition, the majority of papers either focus on a
single objective problem or combine multiple objectives into one. For instance, in
[13], an agricultural field is clustered into blocks, and the sequence of traversal
of these blocks, along with the respective entry and exit points, is optimized.
Further, waypoints can be generated by employing domain knowledge [8] or
by overlaying a grid and assigning a waypoint to each cell [22]. Only a few
papers have used true multi-objective evolutionary algorithms to solve the CPP
problem. One such study optimized the traversal of waypoints to minimize energy
usage and maximize coverage for an autonomous underwater vehicle inspecting
complex structures [10]. In another paper, the energy usage and coverage for
an underwater robot are optimized [1]. Moreover, evolutionary algorithms are
used for continuous path optimization using a single objective. Use cases include
path planning for UAVs [21,12,18] and general mobile robots [11,20,14]. Although
these methods employ a continuous space for the waypoints that form a path, the
waypoints are typically connected by straight lines. Some studies use smoothing
techniques to convert these polylines into free-form paths afterward. Only two
works [19,7] utilized actual free-form path representations, specifically B-splines
and Bézier curves. There is also a multi-objective approach [24], but it still uses
only line segments between waypoints as the path representation. Lastly, two
notable papers integrate multi-objective evolutionary algorithms with free-form
path planning [5,4]. These studies focus on generating a coverage path for an
agricultural field, both with and without prior decomposition. However, only
one seed curve is optimized in these approaches, which is then offset to cover the
entire field, rather than optimizing the entire path.

The goal of this paper is to employ EAs to address a multi-objective weighted
CPP problem using free-form curves. Our major focus is to study the impact of
the path representations in the evolutionary multi-objective optimization con-
text. This aspect is fundamental, as the operators and the evaluation functions
highly depend on the selected representation. For this paper, we propose ab-
stract path representations at a mathematical level. Such representations offer
scalability and can map nearly any path. We explore various options, ranging
from simple polygonal chains to more complex Bézier curves, B-splines, and
NURBs. Additionally, we implement an overlaid rectangular grid to facilitate
comparisons with a discrete graph-based approach. We examine the proposed
representations based on their ability to generate a well spread and converged
Pareto front. While cardinal B-splines are not as fast as polygonal chains or
as divers as the graph-based approach, they provide the best trade-off between
runtime and convergence, making them the most promising approach.
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2 Problem Statement

An area for the weighted coverage path planning problem consists of three com-
ponents: a value function, no-fly zones, and an outer border. The value func-
tion is discrete and defined over a high-resolution grid, resulting in the matrix
A ∈ Rm×n. Each NFZ is defined by a polygon describing its outer shape. All
generated paths within this area must lie within the outer border of the area
and cover as much of the value function as possible, while optimizing both path
length and smoothness. The selected scenarios are illustrated in Figure 3 and
explained in more detail in section 4.

2.1 Path Representations
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Fig. 1. Visualizations of selected path representations: Polygonal Chains (a), Compos-
ite Bézier Curves (b-d), B-Splines (e-g), and Graph-based (h). The additioinal markers
connected by dashed lines indicate the control nodes of the Bézier curves and nodes of
the B-Splines, respectively.

Polygonal Chains are the simplest path representation. They consist of N
control points [P0, . . . , PN−1], connected by linear segments, as visualized in
Figure 1 (a). While this representation does not feature any additional degree
of freedom, its simplicity results in a very low computational complexity. The
polygonal chain, and all following path representations, are defined over the
parameter u ∈ [0, 1]. For this representation, each linear segment gets a unit
interval of u assigned corresponding to the index of the first vertex. This results
in the following mathematical formulation:



4 L. Bostelmann-Arp et al.

PPolygonal(u) = Pi + û
Pi+1 − Pi

∥Pi+1 − Pi∥
(1)

with i = ⌊u(N − 1)⌋ (2) and û = u(N − 1) mod 1 (3)

Composite Bézier Curves consist of individual Bézier curves, each of degree
p, with a C0 continuity constraint. This constraint requires that the last point of
one Bézier curve coincides with the starting point of the subsequent curve. Each
segment is defined by p+1 control points as seen in Figure 1: (b-d) [P i

0, . . . , P
i
p],

where i is the index of the segment within the whole path. These segments can
be expressed as

Bi(û) =

p∑
j=0

(
p

j

)
(1− û)p−j ûjP i

j (4) and PBézier(u) = Bi(û), (5)

where i and û are based on the same parameterization method used for the polyg-
onal chains and can be computed according to Equations 2 and 3. Additional
continuity constraints can be established, but in this work, they are restricted
to C1 (velocity continuity). Its effect on the connections of the individual Bézier
curves is clearly visible in Figure 1 (c) and (d). Stricter continuity constraints
lead to a cascading loss of control over subsequent control points. Equations 6
and 7 for C0 and C1 continuity show how these constraints already affect the
degree of freedom.

P i+1
0 = P i

p (6) P i+1
1 = 2P i

p − P i
p−1 (7)

B-Spline paths are a type of spline represented as a linear combination of basis
functions, each of order n and degree p = n− 1. The path is parameterized over
u and the values [u0, u1, . . . , um] at which the polynomials meet are called knots.
These knots are sorted in non-decreasing order. Given that u ∈ [0, 1], a unique
spline representation can be constructed as

PB−spline(u) =
∑
j

PjBj,n(u), (8)

where Pj are the control points. The individual B-splines Bj,n(u) can be con-
structed recursively, starting from order one

WBj,0(u) :=

{
1 if uj ≤ u ≤ uj+1

0 otherwise
(9)

Bj,k+1(u) := wj,k(u)Bj,k(u) + [1− wj+1,k(u)]Bj+1,k(u) (10)

with

wj,k :=

{
u−ui

uj+k−ui
, uj+k ̸= uj

0 otherwise.
(11)
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In this paper, a B-spline has equidistant knots and is uniquely defined by the
control points. If this restriction is not enforced, they are called non-uniform (N-
U) B-splines and feature an additional degree of freedom. Further, they can also
be rational (R). In this case, they are called NURBS for non-uniform rational
B-splines. In addition to the control points and the knot vector, they feature
a weight w for each control point. A higher weight pulls the curve towards the
respective control point, as showcased in Figure 1 (h). In the case of the weights
being all 1, NURBS generalize to non-uniform B-splines. A NURBS of order n
or degree p = n− 1 can be defined by

PNURBS(u) =
∑
j

PjRj,n(u) (12) Rj,n(u) =
Bj,n(u)wj∑
k Bk,n(u)wk

(13)

where Pj are the control points, Rj,n the rational basis functions, and Bj,n the
B-splines defined above.

Graph-based paths are implemented to serve as a comparison to traditional
coverage path planning. They work on a regular grid with a von Neumann neigh-
borhood topology. A path is encoded by a sequence of cell indices. The resulting
path can be interpreted as a polygonal chain, with the center points of the visited
cells being the control points.

2.2 Objectives

As motivated in the introduction, the main goal is to optimize paths that ag-
gregate as much as possible of the value function. However, to be usable in the
real world, the paths need to be efficient. This includes minimizing the length
and ensuring smoothness, as fewer turns and sharp corners lead to more efficient
traversal. These three objectives are formalized below.

Length is a crucial property of every path. The operational time of robots is
often limited by their respective battery capacity, especially for UAVs. Therefore,
the optimized paths should be short while achieving high coverage. The length
of a path is defined as

f1 =

∫ 1

0

|P ′(u)|du, (14)

but it is solved via numerical integration or by summing the lengths of the linear
segments in the case of polygonal chains and the graph-based approach.

Smoothness of a path determines how well a robot can traverse it. While
UAVs can maneuver quite well, quick directional changes still cost time and
increase energy consumption. For differentiable paths, the smoothness objective
is based on the squared arc length derivative of the curvature. It is a physics-
motivated measure to reduce jerk [17], which has been applied for optimizing
smooth paths before [2]. The computation is shown in Equation 15 with K(u)
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being the curvature for a given path P (u). For paths that are not differentiable
because they consist of n + 1 linear segments, the smoothness is computed as
the average absolute turning angles αi between segment i and i+ 1 as shown in
Equation 16.

f2 =

∫ 1

0

K ′(u)2√
1 + P ′(u)2

(15) f2 =

∑n
i=1 αi

n
(16)

Weighted Coverage is determined by the area visible while traversing a path,
combined with the values of the value-function A. At each sampled position
along the path, a square portion of the area can be seen, resulting in the matrix
V ∈ Rm×n, as described in Equation 17. The proportion of the area covered by
the evaluated path is calculated by dividing the element-wise multiplication of
A and V by the total sum of A. To formulate this as a minimization problem,
the fraction of the area that has not been covered is used as the objective, as
shown in Equation 18.

Vi,j =

{
1 if (i, j)T is seen
0 else.

(17) f3 = 1−
∑m

i=1

∑n
j=1 Ai,jVi,j∑m

i=1

∑n
j=1 Ai,j

(18)

2.3 No-Fly Zone Constraint

Compliance with NFZs is enforced by a single inequality constraint g ≤ 0, where
g represents the total length of the path sections that run within at least one
NFZ. This results in the following equation:

g =
∑
i

∫ 1

0

|f(u,NFZi)|du (19)

f(u,NFZ) =

{
P ′(u) if P (u) ∈ NFZ

0 else
(20)

3 Algorithm

The goal is to minimize the three objectives described in subsection 2.2 by op-
timizing the coverage paths. The NSGA-II algorithm [9] is employed, as it is a
simple-to-use algorithm capable of generating solutions for three objectives. A
binary tournament selector chooses the parents from the current population P ,
which are used to create the children C with |P | = |C| = npop. The encoding,
custom initialization, crossover, and mutation operators are explained in the
following sections. The optimization was implemented using pymoo [3].
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3.1 Encodings

All representations, except for the graph-based one, are encoded as one-dimensional
arrays of floating-point values. However, the number of decision variables differs
among them. Therefore, the representations must be compared in terms of the
dimension of the search space, given the number of waypoints N and the degree
p or order n of the curves used. The resulting formulas are derived below and
summarized in Table 1.

Polygonal chains require storing only a control point per waypoint. As the
experiments are limited to two dimensions, the total number of decision variables
is 2N . A Bézier curve requires p+ 1 control points. When having N − 1 curves,
the number of decision variables totals to 2(N − 1)(p+ 1). However, additional
constraints make some of this information redundant. Due to the C0 constraint,
the first control point of all but the first curve are duplicates, reducing the
number of variables to 2(N − 1)p + 2. Similarly, the C1 constraint makes the
second control point of each Bézier curve redundant, as it must be symmetric
to the second-to-last control point of the previous segment. Consequently, the
number of values required to represent the path is 2(N − 1)(p − 1) + 4. For a
cardinal B-spline, the curve is defined solely by its control points. Therefore,
the number of decision variables is the same as for polygonal chains, namely
2N . For non-cardinal B-splines, the knot vector also needs to be stored. It has
N + p+ 1 knots, but the first and last p+ 1 knots are zero or one, respectively,
to ensure the path starts and ends at the first and last waypoint. Therefore, the
total number of decision variables is 3N − p − 1. NURBS extend B-splines by
adding a weight vector, contributing N additional values, resulting in a total of
4N − p − 1. For graph-based paths, no simple equation can be provided, as it
depends on the grid size and the length of the path.

Table 1. Comparison of the required decision variables. N is the number of waypoints
and n and p are the order and degree, respectively.

Representation Parameters Constraints Decision Variables

Polygonal Chain N 2N

Bézier curves N , p C0 2(N − 1)p+ 2
C1 2(N − 1)(p− 1) + 4

B-spline N , p 2N
Non-Uniform B-spline N , p 3N − p− 1
NURBS N , p N − p− 1

3.2 Initialization

All paths start from the same predetermined position. Additional points are
sampled uniformly within the area. From the start point, these points are con-
nected using a greedy approach, selecting the closest neighbor that has not yet
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been included in the path. While polygonal chains can be directly instantiated
from these ordered waypoints, representations with higher degrees of freedom are
not uniquely defined. For Bézier curves, the additional control nodes are placed
evenly along the lines connecting the waypoints. For B-splines, the waypoints are
used directly as control nodes, with a uniform knot vector and equal weights of
one. Lastly, for the graph representation, the Bresenham line algorithm is used
to connect the waypoints on the grid.

3.3 Crossover

The crossover operator is implemented as a one-point crossover. A random way-
point index is selected from the shorter path, at which both paths are crossed.
This is a simple implementation, as the focus lies on the representations. How-
ever, a more sophisticated version is possible and has already been used in other
works. Instead of selecting a random waypoint to cross, an intersection between
the two parent paths could be used. This results in more realistic offspring, as
no new connections need to be made at the crossover point. The drawback, how-
ever, is that computing the intersection point can be computationally expensive,
especially for B-spline-based representations.

3.4 Mutation

In the case of mutation, one of three independent operators is applied, each de-
picted schematically in Figure 2 and explained below. The first operator modifies
either a waypoint or any other value of the respective representation. The other
two operators add or delete a waypoint, allowing for the creation of shorter or
longer paths. Since this paper aims to compare the representations themselves,
the individual operators are implemented as consistently as possible across the
representations. Though, different representations may benefit from individually
tailored variation operators. However, such a comparison is not possible within
the scope of this work.

The modification operator randomly selects a waypoint and translates it
based on a randomly sampled vector d⃗, with the magnitude sampled from a
normal distribution with mean µ and standard deviation σ and the angle from
a uniform distribution. In the case of composite Bézier paths, this also applies
to the additional control nodes. For representations based on B-splines, instead
of modifying a control node, the additional values can be modified with equal
chances: either a knot vector is replaced with a new value sampled from U(0.0,1.0),
or a weight is replaced with a new one sampled from U(0.0,2.0). Implementing the
same behavior for the graph-based representation is challenging, as the notion
of a global waypoint is missing due to the underlying grid. Therefore, the two
neighboring global waypoints are those with a distance on the path of approxi-
mately ∥d⃗∥ to the selected point. For the mutation that adds a new waypoint,
two subsequent waypoints are first selected. A new point is uniformly sampled
from a circular area, with the center being the middle of the connecting line of
the two selected waypoints and the diameter being the distance between them.
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Modify Modify - Graph Add Delete Delete - Graph

Fig. 2. Examples for the mutation operators, with the original path in blue and the
mutated version in red.

Again, the graph-based representation requires an exception for the same reason
as before: there is no notion of two neighboring global waypoints. As a result,
the addition boils down to the modification mutation. Lastly, the delete muta-
tion removes a randomly selected waypoint, except the starting point. For the
graph-based approach, the same strategy as for the modify mutation is used: the
two points between which the path is replaced with the shortest path are found
by traversing on the path by a distance ∥d⃗∥ in each direction from the selected
point.

4 Experiments

A total of 14 different representations are tested: polygonal chains, quadratic
composite Bézier curves with C0 continuity, cubic composite Bézier curves with
C0 or C1 continuity, quadratic or cubic B-splines, non-uniform B-splines or
NURBS, and lastly the graph-based approach with cell sizes of 1.0, 2.0, 4.0,
or 5.0. Larger cell sizes are not tested, as the view size is set to 5.0. These repre-
sentations are tested on six different scenarios depicted in Figure 3. The scenarios
vary in the complexity of the value function, ranging from a uniform distribu-
tion and sine and cosine functions, to a realistic example in scenario six, where
a road-like structure is highlighted in the middle along with regions of special
interest. Each scenario can be tested with and without the NFZs, resulting in
12 different test cases.

For initialization, all paths start in the lower-left corner of the area, and 49
additional points are sampled for each individual in the starting population. A
population size of 100 is used, with a crossover probability of 0.9 and a mutation
probability of 0.75. The parameters µ and σ, which determine the magnitude
of the shift for the modify mutation, are set to 10 and 2.5, respectively. These
values are based on preliminary experiments that are outside the scope of this
paper but should be examined regarding their impact across the different path
representations in more detail in future research through ablation studies. Each
optimization terminates after 100,000 function evaluations. Finally, 31 runs are
computed for each combination, resulting in 5,208 total runs. Moreover, since
comparing all 14 different path representations at once is challenging, the best
parameter configuration of each variant is determined first before comparing
them against each other.
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Fig. 3. The six used scenarios with their respective value functions. The shaded areas
mark no-fly zones.

A visual data analysis based on the optimized fronts, HV, GD+, and IGD+
is used to determine the best parameters. Since no true Pareto front is known for
this problem, nor can it be computed easily, it is approximated by combining all
runs for each scenario and identifying the non-dominated front. However, there
is no guarantee that it is well distributed, which is a requirement for IGD and its
variants. As a result, the findings based on those metrics need to be interpreted
with caution.

5 Evaluations

Parameter Comparison: The first row of Figure 4 shows two plots of the HV
over the generations for the third scenario, with and without NFZs, comparing
the different composite Bézier curve representations. Notably, the representation
based on cubic Bézier curves with the C1 constraint appears to perform the best.
This observation holds for most other scenarios as well. The likely reason is that
it features smooth curves between segments and a higher degree of freedom,
resulting in higher coverage with the same number of segments.

When inspecting the GD+ and IGD+ metrics in subplot (c) and (d), no clear
favorite emerges among the different B-spline variants. However, when looking
at the HV over the generations, normal B-splines perform best in all 12 tested
scenarios. An example is shown in subplot (e) of Figure 4. Out of the 12 sce-
narios, quadratic B-splines perform best in seven, while the remaining five are
draws. This difference is due to quadratic B-splines generating longer paths with
good coverage. A corresponding 2D Pareto front, that shows this difference, is
visualized in plot (f) of Figure 4.

Lastly, the graph-based paths show similar performance across the HV, GD+,
and IGD+ metrics. For this reason and due to space constraints, these illustra-
tions are not included. A slight trend is visible in the distribution of the resulting
fitness values. A smaller cell size leads, as expected, to a smoother path, while a
larger cell size results in better coverage per path length. This effect is especially
noticeable for solutions with higher coverage. The respective plots are illustrated
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Fig. 4. Selected plots for the parameter comparison of the different path representa-
tions, with the shaded area marking values between the 25th and 75th percentile. (HV:
Hypervolume, WC: Weighted Coverage, S: Smoothness, Sc.: Scenario, PF: Combined
and connected Pareto Front)

in Figure 4 (g) and (h). Since the main goal of the optimization is to achieve
good coverage, the largest cell size is selected for further comparisons with the
other path representations. Overall, polygonal chains, composite cubic Bézier
curves with a C1 constraint, quadratic B-splines, and the graph-based approach
with a cell size of 5.0 are selected for comparison in the next section.
Representation Comparison: Since the smoothness has been calculated dif-
ferently, the remaining two objectives are used to compute a comparable HV.
Additionally, only solutions that pass a certain smoothness threshold are con-
sidered. Firstly, polygonal chains and composite Bézier curves perform similarly.
However, in most scenarios, the Bézier curves tend to perform slightly better.
The IGD+ metric shows this difference, for example in the fourth scenario, de-
picted in plot (d) of Figure 6. Additionally, polygonal chains are inherently less
smooth compared to composite Bézier curves with a C1 continuity, as seen in
the direct comparison between plots (e) and (f) of the same figure. Yet, polyg-
onal chains have a substantial advantage in computational effort, as shown in
Figure 5. When judging B-splines solely based on the HV, it is the worst repre-
sentation. Not only the HV increases slowly, but also it does not always reach the
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running an AMD Epyc 7543 with no additional workload on the same node)

same level as the other representations. The reason becomes clear when look-
ing at the Pareto front itself in Figure 6 (b): B-splines actually find a better
set of solutions for the most part but do not cover the entire front. Their ad-
vantage, however, is seen in the GD+ and IGD+ metrics in plots (c) and (d),
respectively. Runtime-wise, B-splines outperform Bézier curves but lose against
the graph-based and polygonal chain representations. The graph-based approach
has its distinct advantages and disadvantages: As visible in plot (a) of Figure 6,
the HV initially increases the fastest but then flattens out or even decreases. Plot
(b) of the same figure shows the reasons: the approach is excellent in diversity,
covering the whole front and generating solutions not found by other represen-
tations, but the convergence is comparatively poor, which is strongly reflected
in the GD+ metric. The bottom row of Figure 6 depicts one path per represen-
tation that has the best coverage while being between 950 and 1050 units long.
All representations can prioritize the yellow, more important areas. Notably, the
polygonal chains and B-splines require fewer crossing paths in the less important
areas. Apart from the inherently better smoothness of the Bézier and B-spline
representations, graph-based paths are the only representations that sometimes
resemble how a human would plan a path.

6 Conclusion and Future Work

This paper proposed and compared four different mathematical representations
for free-form paths used to optimize a weighted coverage path planning problem
using a multi-objective algorithm. The representations evaluated were polygonal
chains, composite Bézier curves, B-splines, and a graph-based approach. In the
first step, the best parameters for each representation were determined: compos-
ite cubic Bézier curves with a C1 continuity, quadratic cardinal B-splines, and
a cell size equal to the visible area of a UAV for the graph-based approach. All
representations were able to optimize solutions even for complex scenarios and
find suitable trade-offs. Nonetheless, differences were observed that make some
approaches more or less suitable for certain scenarios: Polygonal chains are
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Fig. 6. The three metrics HV, GD+, and IGD+ in (a), (c), and (d), respectively, plus
the combined Pareto front for each representation of the fourth scenario in (b) with
WC being the weighted coverage. The shaded area marks values between the 25th and
75th percentile. (e)-(h) in the last row show solutions with a length between 950 and
1050 with the best respective coverage.

substantially fast and feature good performance but are inherently not smooth.
Composite cubic Bézier curves with C1 continuity often slightly outper-
form polygonal chains and are inherently smooth, but at a notable increase in
computational cost. Cardinal B-splines show good convergence but lack di-
versity, providing the best solutions for most of the Pareto front while missing
the extreme parts. Runtime-wise, they are between polygonal chains and Bézier
curves. The Graph-Based approach behaves contrary to B-splines, featur-
ing good diversity but poor convergence. This leads to an initially fast increase
in the HV that flattens out quickly, resulting in final values lower than those
of the other representations. However, the mathematical representation is only
one part of the optimization. Mutation and crossover operators can also signifi-
cantly impact the performance of the individual representations, which need to
be evaluated in future research. Additionally, in this study, exclusively NSGA-II
was employed; other algorithms, such as indicator-based or decomposition-based
approaches, should also be investigated for their applicability.
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