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Abstract

Multi-objective Pathfinding is an important research field. Although research
has been done in multi-criteria decision making, there has been little research
on decision making methodologies for the multi-objective pathfinding problem.
In this thesis, a decision making approach is proposed that comes in three
versions. These versions support decision making according to decision space,
according to objective values or using a combination of these two steps. The
different steps are then compared by hypervolume and distance-observations. It
shows that each of the variant in decision space outperforms the other variants
according to distances while the objective space version is superior concerning
the hypervolume. The combination of both methods leads to a compromise.
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1 Introduction

1.1 Motivation

The multi-objective optimization problem (MOP) covers a wide �eld of very
important research problems. One problem that belongs to this category is the
multi-objective path�nding problem (MOPP). Path�nding itself surrounds
us in our daily lives, each time we navigate between places. Research is done
in multiple �elds. It is used to �nd paths across the world in video games
[26]. Medical applications include resections [22, 20]. Another �eld of use is
route planning which plays an important rule in logistics [34]. An increasing
number of objectives in MOPP leads to huge numbers of optimal solutions
that overwhelm the user. In order to select solutions that are most relevant
for users, multi-criteria decision making(MCDM) is necessary [37].

Several MCDM-approaches have been proposed for the MOP [27, 35]. However,
there has been little research on evaluating these approaches on or specializing
them for the MOPP-Problem. Although there has been research conducted on
the comparison of trajectories like paths to each other using distance metrics,
using the similarity of paths has not been used as a criterion for decision
making.

1.2 Research Questions

Before designing a concept, the following main research question has been
formulated:

ˆ How can decision making be done in multi-objective path�nding?

Further, the thesis should answer the following additional questions?

ˆ Which methods can be used?

1



1 Introduction

� Which methods can be used in decision space?

� Which methods can be used in objective space?

ˆ How can both methods be combined?

As a result, the goal of this thesis is to �nd a decision making methodology for
the MOPP.

1.3 Structure of the Thesis

This introduction is followed by chapter 2 which explains the basic concepts of
multi-objective optimization, clustering and decision making, including tech-
niques that are used in this thesis. After that, chapter 3 gives a summary of
some related research that have been proposed for MCDM. In chapter 4, the
proposed concept of this thesis is explained. Chapter 5 is used to describe
the experiments that have been done for evaluation and explains the results.
Finally, chapter 6 concludes this thesis by giving a summary of results.
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2 Background

In this chapter, the fundamentals of the multi-objective optimization, path�nd-
ing, clustering and decision making are explained.

2.1 Optimization Problem

An optimization problem is a problem where the best solution of a number of
solutions needs to be selected. As de�ned in [18], an optimization problem(
 ; f )
consists of a search space
 containing all potential solutions and an evaluation
function f : 
 ! R which calculates quality scores for each candidate! 2 
 .
Optimization problems can be divided into minimization and maximization
problems. Depending on the type of optimization, a candidate! 2 
 is called
solution if and only if either 8! 0 2 
 : f (! 0) � f (! ) or 8! 0 2 
 : f (! 0) � f (! ).
In the remainder of this thesis, optimizations are assumed to be minimization
problems, if not stated di�erently.

2.2 Multi-Objective Optimization Problem

As stated in [36], in multi objective optimization, there exists a multi objective
evaluation function ~f (x) where each componentf i : 
 ! R is an evaluation
function. ~f (x) needs to be optimized. In MOP, objective values are no longer
scalars but vectors. As a result, a di�erent de�nition for solutions needs to be
determined in order to compare these objective vectors. The set of solutions is
referred to asS with jSj = n 2 N,

2.2.1 Pareto-Dominance

A very common way to compare candidates and de�ne solutions is using Pareto-
dominance.

3



2 Background

Figure 2.1: Illustration of Pareto-dominance

De�nition 2.1 Pareto-Dominance

Pareto-dominance is a relation between candidates wherex1 2 
 dominates
x2 2 
 if and only if (i�)

(8i; 1 � i � k : f i (x1) � f i (x2)) ^ (9i; 1 � i � k : f i (x1) < f i (x2)) (2.1)

, further denoted asx1 � x2 [18].

De�nition 2.2 Pareto-Optimality

A candidate x is called Pareto-optimal i� @x0 2 
 ; x0 6= x : x0 � x. Figure 2.1
shows a visualization of Pareto-dominance.

There exist di�erent variants of dominance as alternatives to Pareto-dominance.

2.2.2 Epsilon-Dominance

The concept of epsilon-dominance can be used to approximate a Pareto-front.
In this thesis, it is used to select solutions from the Pareto-front according to
their objectives. The following terms are de�ned analogously to [19].

De�nition 2.3 ("-domination)

A candidatex1 2 
 "-dominatesx2 2 
 i� 8i; 1 � i � k : (1+ ") � f i (s1) � f i (s2)
for some" > 0. This relation is further denoted asx1 � " x2.

4
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Figure 2.2: Illustration of epsilon-dominance

De�nition 2.4 ("-optimality)

Analogously to Pareto-optimality, epsilon-optimality is de�ned: x is called"-
optimal i� @x0 2 
 ; x0 6= x : x0 � " x. Using epsilon domination, the Pareto
Front can be approximated with a smaller number of solutions. Another bene�t
is that subsequent concepts take less computational e�ort because operations
include fewer solutions. Figure 2.2 shows an example for epsilon-dominance.

2.2.3 Cone Dominance

In [17], Korhonen et al. describe a cone-shaped domination relation between
solutions. Analogously to Pareto- and epsilon-dominance, cone dominance-
relations are de�ned.

De�nition 2.5 (Cone-Domination)

A candidate x1 2 
 cone-dominatesx2 2 
 i� 8i; 1 � i � k : f i (x1) +
P m

j =1 ;j 6= i �f j (x1) � f i (x2) +
P m

j =1 ;j 6= i �f j (x2) for some angle with radian mea-
sure � . This relation is further denoted asx1 � cone � x2.

De�nition 2.6 (Cone-Optimality)

A non-cone-dominated solution is de�ned as follows: x is called cone-optimal
i� @x0 2 
 ; x0 6= x : x0 � cone � x.

5



2 Background

Figure 2.3: Illustration of cone-dominance

The initial angle of 90° which spans across the area of dominated solutions
is increased by2 � � . Therefor, all solutions in the angle' = 90� + 2 � � are
cone-dominated. An illustration can be seen in Figure 2.3

2.3 Multi Objective Path�nding

In the multi-objective path�nding problem, there are given a directed Graph
G = ( V; E), a starting nodens 2 V, an end nodene 2 V and a multi objective
evaluation function ~f . A path is de�ned as a sequence of nodesp = ( n1; :::; nk)
for somek 2 N; k 6= 0 [28]. A feasible solution is a path that connects the
starting node and the end node, having the formp = ( ns; n2; :::; nk� 1; ne). An
example of a path can be seen in Figure 2.4 Optimal solutions are paths that
optimize ~f .

2.4 Clustering

In order to understand large amounts of data, it is useful to divide them into
smaller groups. This process is called clustering [23]. In the following paragraph,
x i refers to an instance ofS and clusters are referred to asCi ; i 2 N.

6
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Figure 2.4:Example of a path connecting the pointsns = (1 ; 1) and ne =
(10; 10)

2.4.1 Centroid-Based Clustering

A very often used clustering algorithm is k-Means, originally proposed in [23]
and [21]. It calculates k clusters Ci ; 1 < i � k by their cluster centersci ,
which are called centroids, and assigns all instances to a cluster [39]. First, the
number of clustersk � j Sj needs to be assigned. Then, k random centroidsci are
randomly assigned. All instances are iteratively assigned to their closest cluster
and new cluster centers are calculated, until the positions of the centroids stop
changing. The position of a centroidci is de�ned as the average of the instances

of its cluster ci =
P

x 2 C i
x

jCi j
. A disadvantage of this clustering method is that the

initial assignment of the centroids in�uences the clustering result.

2.4.2 Agglomerative Clustering

Agglomerative Clustering represents one way of clustering. The clustering is
done iteratively [39]. In the beginning, each point has its exclusive cluster. In
each step, the two clusters closest to each other are combined. This is done
until all entities belong to the same cluster. All of these joins can be visualized
in a dendrogram. In Figure 2.5, a dendrogram and the four stages of clustering
can be seen.
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2 Background

Distance Metrics

In order to identify how close two clusters are, the similarity of two instances
needs to be de�ned. Distance metrics are used to determine how dissimilar two
instances are.

De�nition 2.7 Distance Metric

As Chen de�ned in [4], a distance metricd : S � S ! R needs to satisfy the
following conditions fors1; s2; s3 2 S:

1. non-negativity: d(s1; s2) � 0

2. symmetry: d(s1; s2) = d(s2; s1)

3. triangular inequality: d(s1; s3) � d(s1; s2) + d(s2; s3)

4. d(s1; s2) = 0 i� s1 = s2

Euclidean Distance Euclidean distance is a distance measure for points in
Euclidean space [32]. The distance for two n-dimensional pointsx and y is
de�ned as:

d(x; y) =

vu
u
t

nX

i =1

(x i � yi ) (2.2)

Hausdor� Distance The Hausdor� distance is a distance measure that
can be used on paths and curves in general [5]. For two paths p1 =
(n1s; n12; :::; n1k� 1; n1e1 ) and p2 = ( n2s; n22; :::; n2k� 1; n2e2 ), it is de�ned as:

dH = max

8
<

:
sup
n1i ;

0<i � e1

inf
n2i ;

0<i � e2

d(x; y); sup
n2i

0<i � e2
;

inf
n2i ;

0<i � e1

d(x; y)

9
=

;
(2.3)

This metric does not take the �ow of the curves into consideration.

Fréchet Distance The Fréchet distance is a distance measure that can be
used on paths and curves in general. It was �rst proposed in [12]. Eiter and
Manilla use a dog walk analogy to explain the problem [33]: A person walks
a dog. Both are walking on their paths and are connected by a leash. Their

8



2.4 Clustering

speed can vary, but they can only move forward.An illustration of one of these
dog walks can be seen in Figure 2.6. The Fréchet distance now is the shortest
possible leash, depending on the travel speeds of the the dog and the person.

The Fréchet distance of two curvesf : [a; b] ! V and g : [a0; b0] ! V with
a; a0; b; b0 2 R and V as metric space is calculated as:

� F (f; g ) = inf
�;�

max
t2 [0;1]

d(f (� (t)) ; g(� (t))) (2.4)

� : [0; 1] ! [a; b] and � : [0; 1] ! [a0; b0] are non-decreasing functions. Hence,
f (� (t)) and g(� (t)) calculate the positions of the person and the dog at time t.
In [33], Eiter and Manilla proposed the discrete Fréchet distance as an approx-
imation of the Fréchet Distance� dF that reduces the computational e�ort to
O(kf � kg) wherekf and kg are the number of nodes in each path. In order to
calculate the discrete Fréchet distance, the two curves are approximated by
polygonal curves P and Q. Their sequences of nodes in those paths are referred
to as � (P) = ( u1; :::; up) and � (Q) = ( v1; :::; vq). The authors de�ne a coupling
L of P and Q as a sequenceL = (ua1 ; vb1 ) ; (ua2 ; vb2 ) ; : : : ; (uam ; vbm ) where the
order of points from P and Q is not changed anda1 = 1; b1 = 1; am = p; bm = q.
The discrete Fréchet distance of P and Q is calculated as:

df (P; Q) = min fk Lk j L is a coupling betweenP and Qg (2.5)

Here, jjL jj refers to the length of the coupling L and is de�ned as the longest
length of couples in L.

Linkages

There exist di�erent methods according to which clustering is done. Especially,
there are di�erent ways to de�ne distances between clusters. The following are
based on [9].

Single linkagede�nes the distance of two clustersC1 and C2 as the minimal
distance between two paths of these clusters:dsingle (C1; C2) = min

x2 C1 ;y2 C2
d(x; y).

Complete linkagede�nes the distance of two clusters as the maximum distance
between two paths of these clusters:dcomplete(C1; C2) = max

x2 C1 ;y2 C2
d(x; y).

Figure 2.7 illustrates both di�erent linkages between two clusters of points.

9



2 Background

2.4.3 Center of Clusters

In order to represent a cluster, a medoid can be used [15]. It is de�ned as the
solution with the minimal distance to all other solutions in its cluster. Here, it
is de�ned using discrete Fréchet distance:

mC = arg min
x12 C

X

x22 C

df (x1; x2) (2.6)

2.4.4 Comparing clusterings

There are di�erent ways to compare clusterings of the same data to each other.
In this thesis, only internal measures are discussed. These only use data that
has been generated by or was used for the cluster analysis [38].

Average Silhouette Coe�cient

The silhouette coe�cient was proposed in [30] as a way to compare di�erent
clusterings to each other. For every instance i,ai = 1

jCi j� 1

P
j 2 Ci ;i 6= j dF (i; j )

describes the average distance of an instance i to all other instances in its
cluster ci and bi = mink6= i

1
jCk j

P
j 2 Ck

dF (i; j ) is the average distance of i to that
cluster that minimizes this distance. Now, the silhouette coe�cient is de�ned
as:

Si =
(bi � ai )

max (ai ; bi )
(2.7)

It is used to determine how well an instance is being clustered. To compare
di�erent clusterings, the average of the silhouette coe�cients needs to be com-
pared. A higher silhouette coe�cient might indicate a better clustering. The
silhouette coe�cient for the di�erent number of clusters can be visualized in
a graph, as shown in Figure 2.8. An assignment of a negative silhouette coe�-
cient might indicate a false assignment of the observed individual. As a result,
a negative average silhouette coe�cient indicates a weak clustering.

Dunn Index

A di�erent approach was proposed by Dunn in [8]. The Dunn index is de�ned
as

� (k; P) = min
16 q6 k

min
16 r 6 k

r 6= q

d (Cq; Cr ) = max
16 p6 k

diam (Cp) (2.8)

10
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where two clustersCi and Cj have the inter-cluster separationd(Ci ; Cj ) =
min x 2 C i

y 2 C j

d(x; y)) and clusterCi has the diameterdiam(C1) = maxx;y 2 Ci d(x; y).

The Dunn index is challenged by noisy data because the inter-cluster separation
then is hardly in�uenced [38].

Davies-Bouldin index

Davies and Bouldin proposed a separation measure that can be used to
compare clusterings of the same data. It consists of operation measure be-

tween clusters Ci and Cj M ij =
nP N

k=1 jcki � ckj jp
o1=p

and a dispersion

Si =
n

1
jCi j

P jCi j
j =1 jx j � ci j

q
o1=q

. Here, ci refers to the centroid of the cluster
Ci , and cki to the centroids k-th component. The similarity of two clusters is
de�ned as Rij � Si + Sj

M ij
with maximum values Ri = maxi 6= j Rij . These values

can be used to calculate the average of cluster similarities�R � 1
N

P N
i =1 Ri of

N clusters. It needs to be minimized.

2.5 Ramer-Douglas-Peucker algorithm (RDP)
for simplifying paths

For the agglomerative clustering, the distances between all paths of the Pareto
Front must be calculated. In order to minimize the computational e�ort of
the distance calculation, the paths can be shortened by an algorithm, Ramer,
Douglas and Peucker proposed in [7] and [29]. It selects points which are
needed to represent the curve using a parameter" rdp . The algorithm works as
follows:

The start and end point of the path are selected as A and B and added to the
simpli�ed path. From all points that lie on the initial path between A and B,
the point with maximum distance to the line AB is detected and referred to
as C. If d(C; A; B ) > " rdp then C is added to the simpli�ed path between A
and B and the method is repeated recursively between points A and C and
between points C and B.

11



2 Background

In case" rdp = 0, all points are added to the simpli�ed path, except for points
that are located on straight lines between two other points. Hence, only
obsolete points are being removed, and the simpli�ed path is identical to the
original path.

An example can be seen in Figure 2.9. This �gure shows how the curve stays
the same for" rdp = 0 while using fewer nodes and how" rdp = 0:5 reduces the
amount of nodes even more by simplifying the curve. A consequence of this
could be that a clustering or other operations on the paths calculate a di�erent
output because the curve of the solutions change.

2.6 Decision Making

Decision making describes the process of selecting solutions, given a set of
solutions [11]. In MCDM, this is done whilst taking into account multiple
criteria [11]. Methods for MCDM usually calculate a ranking or a selection of
the possible solutions. Decision making can be categorized in a priori and a
posteriori decision making. The process of a posteriori decision making starts
after a Front of optimal solutions has been found [24]. This process tends
to be associated with high computational e�ort. On the other hand, a priori
decision making guides the process of �nding solutions. For that purpose, the
decision maker's preferences must already be speci�ed before �nding solutions
[24]. There exist also hybrids of these two approaches.
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2.6 Decision Making

Figure 2.5:Di�erent clusterings of a set of paths with seven (top left), six (top
right), two (left middle) and one (right middle) clusters and the
dendrogram (bottom)
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2 Background

Figure 2.6: Example of a dog walk; leash illustrated as red

Figure 2.7: An illustration of single and complete linkage

Figure 2.8:Example of curves for silhouette coe�cient with single (left) and
complete (right) linkage clustering

Figure 2.9:An example path (left) and two simpli�cations using RDP wit
" rdp = 0 (middle) and " rdp = 0:5 (right)
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3 Related Research

There has been a lot of research on multi-objective path�nding. This section
will explain some of the most common general decision making methods.

3.1 Weighted Sum Approach (WSM)

A very common and simple approach for MCDM, proposed in [10], uses a weight
wj for each criterion j [35]. For all solutionsA i , a WSM-score is calculated:

WSMA i =
nX

j =1

aij wj ; i 2 f 1; :::; Ng (3.1)

The best solution then is the one with the Maximum WSM-score. This method
can be used in problems where all criteria have the same dimensions and units.
On the other hand, in multi-dimensional problems, WSM can not be used
because the di�erent criteria of di�erent dimensions can not be compared to
each other.

3.2 Analytic Hierarchy Process

In [31], Saaty describes a di�erent approach to solve the MCDM, called the
Analytic Hierarchy Process. First, weights for the di�erent criteria are calcu-
lated, followed by weights for the di�erent solutions. In both cases, this is done
by comparing the importance of the elements, which can refer to criteria or
solutions. A progressing scale from 1 to 9 ranges from equal importance to one
element being extremely important compared to the other one. The scale is
expanded by the reciprocal values. This can be represented in a matrix, where a
value aij = 9 means that element i is extremely important compared to element
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criteria1 criteria2 criteria3
criteria1 1 3 7
criteria2 1/3 1 5
criteria3 1/7 1/5 1

Table 3.1: Example for the comparison matrix.

j, while aij = 1 means that both solutions have the same importance. It holds
that aij = 1=aji .

The weights wi for the criteria i are identical to the normalized principal
eigenvector. Afterward, the same method is used to get weightingswij for each
solution j in respect to each criterion i. That means that for every criterion, a
matrix is created that compares the importance of all solutions. Finally, the
priority of a solution is equal to pj =

P
i wij � wi . This can be used to get a

ranking of solutions.

A di�erent method of obtaining priorities is to only use the weights obtained
for the di�erent criteria. Those can be used to get a ranking analogously to
WSM but with relative attribute values [35].

3.3 ELECTRE

The Elimination and Choice Translating Reality (ELECTRE)-Method uses
pairwise comparisons between solutions [35]. Initially, the values of all solutions
are represented by a matrixX in which an entry x i j holds the weighted,
normalized value of thej -th criterion of the i -th solution. The normalization
can be formulated asx ij = aij

jai j
� wi .

For each pair of solutions(k; l ), the concordance setCkl = f j jykj � ylj g and
discordance setDkl = f j jykj > y lj g are calculated. These sets are being used
to create a concordance matrix C with entriesckl =

P

j 2 Cki

wj and a discordance

matrix D with entries dkl =
max j 2 D k 1 jykj � ylj j

max j jykj � ylj j . Entries for k = l are not

de�ned in both matrices. A concordance thresholdc = 1
m(m� 1)

mP

k =1
and k 6= l

mP

l =1
and k 6= l

ckl

is used to determine a concordance dominance matrix F with entries
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3.4 TOPSIS

f kl =
�

1; ckl � c
0; ckl < c

. Analogously, a discordance dominance matrix G with

entries gkl =
�

1; dkl � d
0; dkl < d

is created based on a discordance threshold

d = 1
m(m� 1)

mP

k =1
and k 6= l

mP

l =1
and k 6= l

dkl .

The aggregate dominance matrix E holds entriesekl = f kl � gkl . These entries
can be used to identify a domination according to ELECTRE:ekl = 1 means
that solution Ak dominates solutionA l according to concordance and discor-
dance. As a result, all columns with at least one entry that is equal to one can
be discarded.

3.4 TOPSIS

"Technique for Order Preference by Similarity to Ideal Solution" (TOP-
SIS) was proposed by Yoon and Hwang in [14]. The main idea is that
the distance to the ideal solution for a problem should be minimal and
the distance to the worst problem should be maximal. The �rst step
of their approach is to create a matrix with weighted, normalized at-
tribute values, analogously to ELECTRE. Additionally, the ideal and
worst possible solutionsA � = f (min vij

i
jj 2 C)ji = 1; 2; :::; mg and

A � = f (maxvij
i

jj 2 C)ji = 1; 2; :::; mg are calculated.C refers to the set of

criteria that need to be minimized.

The relative closeness of solutionA i to the ideal solution is calculated as
closenessi � = di � =(di � + di � ) with distancesdi � and di � to the worst and ideal
solution. Finally, the solutions A i can be ranked in the decreasing order of
closenessi � .

3.5 Knee Points

In the MOP, a knee refers to a convex "bulge" in the curve of the Pareto-front
[6]. Those points that are located in this knee tend to be chosen as the preferred
solutions. An example can be seen in Figure 3.1.
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Figure 3.1: An Example of a knee K for a MOP with two objectives

There have been multiple MCDM-approaches that use knees in solutions for
MOP.

3.5.1 Angle-Based Method

In [2], Branke et al. proposed two methods for a posteriori decsion making that
work by detecting knee points. The �rst method is based on the observation
that angles are spanned by neighbors of a knee point tend to be larger than
the angle around other points. To detect knee points, for each objective vector
~f (x i ), lines are spanned to connect them with its two neighbors~f (x i � 1) and
~f (x i +1 ). The angle between these lines is calculated. In an advanced version,
four angles between~f (x i ) and its four neighbors~f (x i � 2), ~f (x i � 1), ~f (x i +1 ) and
~f (x i +2 ) are calculated and the largest one is selected. In both variations, the
points that span the largest angles can be assumed to be knee points. Although
this method could be used to solve the MCDM in MOP in general, the authors
recommend this approach for bi-objective problems only.
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3.5 Knee Points

3.5.2 Utility-Based Method

The second method proposed in [2] can also be used for problems with more than
two objectives. It uses utility functions U(x; � ) =

P
� i f i (x) with randomly

chosen
P

� i = 1. The marginal utility

U0(x i ; � ) =

(
minj 6= i U (x j ; � ) � U (x i ; � ) for i = arg max

j
U (x j ; � )

0 otherwise
(3.2)

calculates the cost for discarding the valuex i with the highest utility and having
to rely on the second best valuex j . Its expected value can be approximated,
applying random utility functions on each solution and calculating the average
value. Finally, the values with a higher expectation of marginal utility values
are more likely to be knee points.
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4 Proposed Approach

The goal of Decision Making is to provide the user with a ranking or selection
of "good" solutions. The proposed approach selects these solutions according to
their objective values or according to their representation in decision space. In
both spaces, the methodologies are supposed to select solutions that represent
the set of solutions. The algorithm consists of two steps. One of them is done
in objective space. Here, the amount of solutions is reduced by using either
epsilon- or cone-dominance. The other step is done by clustering the data and
calculating output candidates in decision space. The algorithm works a priori,
which means that it selects solutions from an already generated set of Pareto-
optimal solutions.
There are three versions of the algorithm:

ˆ Only make decision according to objective values

ˆ Only make decision according to clustering in decision space

ˆ Combination of both methods

The combination starts by reducing the solutions according to their objective
values, followed by applying the clustering algorithm. The di�erent versions
are visualized in Figure 4.1

4.1 Preparation

The algorithm takes Pareto-optimal solutions represented by their paths and
objective values as input by reading them from �les. The paths are simpli�ed
with the RDP-algorithm and " rdp = 0 in order to keep their course while using
fewer nodes. This safes up computational time in later steps. Additionally, all
objective values are normalized to prepare for the evaluation.
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4 Proposed Approach

Figure 4.1: possible sequences of both steps of the algorithm

4.2 Objective Space

This step is supposed to make a decision according to the objective values of
solutions. Therefor, a relevant subset of solutions from the Pareto-front needs
to be selected. In order to that, a more general form of domination is used,
namely epsilon- or cone-dominance. This allows the algorithm to further select
non-dominated solutions out of the non-Pareto-dominated solutions. In order
to �nd representative solutions, the algorithms either uses as approximation of
the Pareto-front by using epsilon-dominance or tries to detect knee points by
using cone-dominance. First, the value of" or ' is assigned. This is followed
by the selection of non-dominated solutions in the sense of epsilon- or cone-
dominance. For this selection process, a solution archive is maintained. All
solutions are inserted iteratively. On each insertion, all currently stored solu-
tions are checked for domination by the inserted one. Additionally, the inserted
solution is checked for domination by all other solutions. In case of domination,
the dominated solutions are discarded. This process written in pseudocode can
be seen in Algorithm 1. The inputsolution_ front represents the front of so-
lution, dominates(objectives1; new_ objectives2; domination_ parameter) re-
turns true i� the vector of objective values objectives1 dominates
objectives2. This can either refer to epsilon- or cone-dominance. The func-
tion delete(list; value) is used to delete the value from the listlist .
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4.3 Decision Space

Algorithm 1 DM in Objective Space
Input: solution_ front; domination _ parameter; dominates

1: archive = list []
2: for new_ objectives in solution_ front do
3: is_ dominated = FALSE
4: for objectives in archive do
5: if dominates(objectives; new_ objectives; domination_ parameter)

then
6: is_ dominated = TRUE
7: BREAK
8: end if
9: end for

10: for objectives in archive do
11: if dominates(new_ objectives; objectives) then
12: delete(archive; objectives)
13: end if
14: end for
15: end for

4.3 Decision Space

In decision space, the algorithm is supposed to select solutions that di�er in their
course. Centroid-based clustering algorithms are di�cult to use because they
need to calculate an average of the instances. For paths, this proves di�cult,
although an approach for centroid-based clustering has been proposed in [3].
Hence, an agglomerative clustering is performed on the set of solutions with
the intention of �nding clusters of similar paths. In order to take the �ow of
the di�erent paths into consideration, the distance between paths is calculated
using discrete Fréchet distance. As linkage, complete and single linkage are used.
The clustering is applied to calculate numbers of clusters ranging from two to
half of the number of paths in the set of solutions. The "best" clustering is
de�ned by the maximal silhouette coe�cient. In order to �nd the best number
of clusters, the clustering algorithm calculates numbers of clusters ranging from
two to half of the number of paths in the set of solutions using single linkage and
complete linkage separately. Then, the silhouette coe�cient for each clustering
is calculated. The clustering with the maximal value is supposed to be the best
choice and consequently selected. This is done for both linkages independently.
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4 Proposed Approach

Algorithm 2 Clustering in Decision Space
Input: solution_ set

1: scores=
l

jsoultion _ setj
2

m

2: best_ clustering = 0
3: best_ score= 0
4: for linkage in {single, complete}do

5: for number_ of _ clusters = 2; 3; : : : ;
l

jsolution _ setj
2

m
do

6: clustering = clustering (solution_ set; number_ of _ clusters;
discrete_ fr _ dist; linkage)

7: scores[number_ of _ clusters] = calculate_ silhouette_ score(clustering )
8: end for
9: if argmax(scores) > best_ score then

10: best_ clustering = clustering (argmax(scores) + 1)
11: best_ score= max( scores)
12: end if
13: end for
14: for cluster in best_ clustering do
15: Output: medoid(cluster; discrete_ fr _ dist)
16: end for

Finally, one path per cluster is used as output. This path should represent
the cluster. Therefor, the medoid of each cluster is used. A pseudocode of the
algorithm can be seen in Algorithm 2. Thesolution_ set refers to the set of
solutions that need to be clustered. To calculate the discrete Frechét distance,
discrete_ fr _ dist is used. The functionclustering performs a hierarchical
clustering. As arguments, it gets a set of solutions that need to be clustered,
the number of clusters, that need to be calculated, the distance functions and
the preferred linkage. Further,calculate_ silhouette_ score and medoid are
used to calculate the silhouette score and geometrical medoid of a clustering.
The terms single and completerefer to linkages for clustering.
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5 Evaluation

In this chapter, the evaluation of the methodologies is described. Therefor, the
problems that were used for evaluation are explained. The di�erent evaluation
metrics are portrayed in order to present the evaluation results. Finally a
summary is given.

5.1 Problems to evaluate

For evaluation, the proposed decision making is applied to Pareto fronts of
di�erent MOPs. These fronts have been provided by [37]. The Problems consist
of two-dimensional grids with sizes[1; xmax ]� [1; ymax ] for xmax ; ymax 2 N where
grid positions are referred to as(x; y). In each map, a start nodenS = (1 ; 1)
and an end nodene = ( xmax ; ymax ) are de�ned for path �nding.

5.1.1 Features of Di�erent Map Types

The di�erent Problems di�er in their size, but also in the type of the used map
[37]. The three di�erent features are explained according to [37] in this section.

Obstacles

Weise and Mostaghim [37] implemented di�erent kinds of obstacles in each
map: no obstacles, checkerboard pattern, lake obstacle. In the checkerboard
pattern, every second cell is an obstacle. The lake is a circle-shaped obstacle
with radius r = xmax =4. The velocity of an obstacle cell isv(x; y) = 0 . The
lake and checkerboard obstacles for a12� 12 map are shown in Figure 5.1
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5 Evaluation

Figure 5.1:An example of the di�erent obstacle-types: no obstacles (left), lake
(middle) and lake Obstacles (right) for a map size of twelve; higher
velocities are represented by darker colors

Elevation

The height of the grid cells is de�ned by an elevation function which uses a
hill function in the interval [� 3; 3]. The coordinates of the grid cells need to
be scaled to spread across the interval. As hill function, one of the following
functions are used with scaled coordinates(xs; ys):

hm (xs; ys) = 3(1 � xs)2e� x2
s � (ys +1) 2

� 10e� x2
s � y1

s (� x3
s + xs=5 � y5

s)

� 1=3e� (xs +1) 2 � y2
s

(5.1)

h1(xs; ys) = 5 e� (xs +1 :5)2 � (ys +1 :5)2
(5.2)

h2(xs; ys) = 5 e� (xs � 1:5)2 � (ys � 1:5)2
(5.3)

h3(xs; ys) = 5 e� (xs � 1:5)2 � (ys +1 :5)2
(5.4)
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5.1 Problems to evaluate

The elevation is de�ned by combining those hill functions using a parameter
nh as follows:

h(x; y) =

8
>><

>>:

P nh
i =1 hi ; nh 2 2; 3

h3; nh = 1

hm ; nh = M

(5.5)

Neighborhood Relation

The 2k - neighborhood relation de�nes between which nodes an agent is
allowed to travel. The relation is denoted by a parameterk 2 f 2; 3g [37].
Therefore,k = 2 denotes a 4-neighborhood which means that an agent is only
allowed to move north, east, south and west. An 8-neighborhood which is
denoted byk = 2 additionally allows the agent to move north-east, south-east,
south-west and north-west.

Backtracking is not allowed in any of the maps. As a result, the agent is only
allowed to move north, east and north-east.

5.1.2 Objectives

The Pareto fronts were determined for problems with �ve objectives which
Weise described in [37] as follows.

Euclidean length

The length of a path is calculated by adding the sums of the Euclidean distance
between all adjacent pairs of nodes(ni ; ni +1 ) of a path p.

f 1(p) =
K � 1X

i =1

d(ni ; ni +1 ) (5.6)
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Expected delays

The second objective is the sum of delays between two adjacent nodes in the
path. The delay function takes into consideration the velocity values of two
adjacent nodes:

delay (ni ; ni +1 ) =
8
>>>><

>>>>:

2; vmax (ni ) 6= vmax (ni +1 )

3; vmax (ni ) = vmax (ni +1 ) = 50

1; vmax (ni ) = vmax (ni +1 ) = 100
1
5 ; otherwise

(5.7)

Therefore, the second objective is de�ned as follows:

f 2(N ) =
K � 1X

i =1

delay (ni ; ni +1 ) (5.8)

Elevation

The Elevation describes the sum of ascends between two adjacent nodes in the
path e(ni ; ni +1 ) using the elevation functionh(ni ):

f 3(p) =
K � 1X

i =1

e(ni ; ni +1 )

e(m; n) =

(
h(n) � h(m); if h(n) > h (m)

0; otherwise

(5.9)

Traveling Time

The time which is needed by the agent to travel a path is used as the fourth
objective. The traveling time for a single path segment is calculated by dividing
the distance of the two adjacent nodesd(ni ; ni +1 ) by their average velocity
vm ax(n)+ vm ax(n+1)

2 :

f 4(p) =
K � 1X

i =1

2d(ni ; ni +1 )
vmax (n) + vmax (ni +1 )

(5.10)
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Smoothness

The �fth objective describes the curvature of a path. It is the sum of all angles
between two path segments. Said angle between two angles is calculated as
cos(' ) = a � b=jjajj jj bjj . The smoothness, then, is the sum of all angles in the
path:

f 5(p) =
K � 1X

i =2

arccos
�

ni ni � 1� j ni +1 ni

jni ni � 1j � j ni +1 ni j

�
(5.11)

5.1.3 Names of Problems

The di�erent problem instances are named according to their features. An ex-
ample isCH_X9_Y9_P1_K3_BF . The names contain six sections, separated
by a backslash. The �rst section stands for the obstacle type. The possible ab-
breviations,NO, CH, LA refer to the obstacle types, no obstacles, checkerboard
pattern and lake obstacles. The second and third section name the size of the
map in X- and Y-direction. The fourth section indicates the elevation function.
Here, the letter P is followed by a character that refers to the parameternh of
the hill function. In the �fth section, the digit after K refers to the parameterk
of the neighborhood. The last section indicates the backtracking.BF and BT
stand for disabled and enabled backtracking. The example refers to a problem
with checkerboard obstacles, a size of nine by nine, an elevation ofnh = 1, a
k = 3 neighborhood and no backtracking.

5.2 Evaluation Criteria

In this section the metrics used for evaluation are discussed. It needs to be
mentioned that a qualitative evaluation of the output is di�cult because the
quality of results might be a subjective observation.

5.2.1 Metrics

Hypervolume Indicator

The hypervolume (HV) is a quality indicator for Pareto-fronts. It is calculated
as the combined volumes that are being dominated by the individuals of the
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Figure 5.2: Visualization of hypervolume

Pareto front [16]. It is limited by a reference point r [13]. In the illustration in
Figure 5.2, the HV can be described as the blue area. It is calculated as

HV (S; r) = � (
jSj[

i =1

vi;r ) (5.12)

wherevi;r refers to the set of all points in the region dominated byx i , limited by
the reference point r. The Lebesgue measure� assigns a volume-like measure
to a set.

In the experiments, hypervolume is used to compare the quality of the initial
front with the output of the algorithm. All initial solutions are normalized
as stated in Section 4.1. This is done because the objectives are of di�erent
dimensions.

Hypervolume Cotribution (HVC)

While the HV can be used to compare di�erent Pareto-fronts, the HVC can
be used to rank di�erent solutions according to their importance for the HV
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[1]. For solution x i , it is de�ned as the part of the HV, the solutions dominates
exclusively

HV C(x; r ) = �

0

@vi;r =
jSj[

j =1 ;j 6= i

vj;r

1

A (5.13)

In this evaluation, the HVC is used to compare the importance of selected
output solutions. This s done by setting the average HVC of all output solutions
in relation to the average HVC of all initial solutions.

Distances between paths

The decision making algorithm needs to put out paths that are di�erent to
each other. In order to do that, the Fréchet distances between output paths
are used to indicate the spread. The minimal, maximal and average distances
of the output are used as indicators.

5.2.2 Further Evaluation Criteria

Optimal Number of Alternatives

The main goal of the proposed MCDM-approach is to provide the user with a
selection of representable solutions. On the other hand, it is very important to
de�ne a maximum number of solutions, that should be presented. This can be
illustrated with the following example: a user is provided with a selection 100
out of 1000 solutions. Obviously, this selected output is smaller than the input
of the MCDM-algorithm. However, it would serve little to no purpose because
the user would still be overwhelmed by the amount of solutions. Hence, the
question arises, what number of solutions a user is still able to process.

Psychological research has been done on how many instances a human can
handle in his short-term memory. In [25], Miller found out that this number is
in the range of 5 to 9. This number seems to depend on the type of information.
Therefor, the lower bound of 5 will be used as a threshold for the number of
paths that can be processed by the decision maker.
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5.3 Experiments and Remarks

The experiments are performed on problems from [37]. More speci�cally, the
problem instances cover all combinations of problems with:

ˆ a size ranged from three to 14,

ˆ objectives of all di�erent types: no objectives, checkerboard pattern and
lakes,

ˆ all di�erent elevation functions

ˆ no backtracking

From the resulting problems, all problems with at least 4 paths are selected.
This is done, because the clustering does not output solutions for less than four
paths. This leads to 206 problem instances. The results are observed under the
assumption that a good output of the DM-algorithm consists of a maximum of
�ve solutions. In decision space, the average distance between paths should be
maximized in order to represent the set of solutions. The HV serves to com-
pare objective values of the output with objective values of the initial solutions.

In Section 5.4, the metric values for the output solutions will be represented
by relative values like relative HV. This means that the HV of the output
is set into relation to the HV of the initial solutions. There will be di�erent
visualizations of solutions in decision space. In order for the solutions not to
overlap each other, solutions are shifted to the upper left. That way, it is still
possible to see the �ow of all paths. An example is shown in Figure 5.3.

5.4 Results

In this section, the results of the experiments are presented and discussed.

5.4.1 Results of Clustering

The clustering in decision space is applied to the set of solutions in three
variations concerning the used linkage: single linkage only, complete linkage
only and best linkage as a combination of both. In the combination, clustering
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