
Fabian Richardt

Evolutionary Policy Optimization
in Small Communities with a
Location-Based Epidemic Model

Intelligent Cooperative Systems
Computational Intelligence

Evolutionary Policy Optimization in Small
Communities with a Location-Based Epidemic

Model

Master Thesis

Fabian Richardt

November 19, 2021

Supervisor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Advisor: M.Sc. Dominik Fischer

Fabian Richardt: Evolutionary Policy Optimization in Small
Communities with a Location-Based Epidemic Model
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2021.

Abstract

In the modern interconnected world epidemics like the Severe Acute Respi-
ratory Syndrome Coronavirus-2 outbreak of 2019 are a global risk. Decision
makers face the trade-off of containing infection spread versus the economic
and social costs of containment measures. Simulation models to help with this
decision often focus on either of two aspects: The individual level with contact
between people or national scales to help policy makers.

We argue that small communities - universities, hospitals, villages - form an
important middle ground between these extremes. They are a part of emergent
infection spread on larger scales. At the same time small communities exhibit
more social structures that the homogeneity of individuals assumed by classical
models.

Using Otto-von-Guericke Universität Magdeburg as example community, we
develop and implement a location-based epidemic model including costs for
containment measures. The bipartite graph models individuals visiting loca-
tions according to simple generation rules. We optimize containment policy
parameters using evolutionary multi-objective optimization for the goals of low
cumulative infections, infection peak and cost .

Through exploratory experiments we find such optimization to produce valid
parameter sets with interesting fitness characteristics. Along with in-depth
analysis of simulation runs the optimization helps understand the model, which
produces results in line with classical approaches and scenario assumptions.
We conclude that the location-based model is a valid approach for scenarios
like small communities where locations matter. The model is easy to extend
with e.g. testing or vaccination and the modeling can be incrementally im-
proved to better match the chosen scenario. It further helps with identifying
locations serving as infection hot-spots. Lastly, a location-based graph can be
transformed into a contact graph for individuals, making it viable as first step
for other modeling approaches.

I

Contents

List of Figures VII

List of Tables IX

List of Acronyms XI

1. Introduction 1

2. Related Work 5
2.1. Epidemics, their Modeling and Simulation 5

2.1.1. The Classic SIR Model and Epidemic Spread 6
2.1.2. Social Networks and the Topology of the Spread 7
2.1.3. Agent-based Modeling - Autonomous Heterogeneous Ac-

tors . 10
2.1.4. Consideration of Modeling Approaches 11
2.1.5. Characteristics and Trade-offs of Containment Policies

and Goals . 12
2.2. Evolutionary Multi-Objective Optimization 13

2.2.1. Nondominated Sorting Genetic Algorithm II (NSGA-II) . 16
2.2.2. Nondominated Sorting Genetic Algorithm III (NSGA-III) 17
2.2.3. Multi-objective Evolutionary Algorithm Based on De-

composition (MOEA/D) 19
2.3. General Graph Theory . 20

2.3.1. Dynamic Graphs . 21
2.3.2. Graph Generation . 22

3. Model Design 23
3.1. The Graph Model . 24

III

Contents

3.2. Modeling Time-steps . 26
3.3. Representing Sporadic Infections via a Global Background Me-

chanic . 26
3.4. Modeling of Epidemic Containment Policies 27

3.4.1. Optimization Goals . 30
3.4.2. A Policy Model for the Graph Representation 31
3.4.3. A Cost Model for Policies 32

3.5. Summary of the Complete Model 33
3.5.1. Parameters . 33

4. Implementation 35
4.1. Graph Representation and Generation 36

4.1.1. Generation Algorithm 36
4.1.2. Graph Scaling and Parameters 38

4.2. Implementation of the Epidemic Simulation 38
4.2.1. Performance Optimizations for the Implementation . . . 39

4.3. Parameter Optimization with jMetalPy 40
4.3.1. Problem Definition . 40
4.3.2. Simple Crossover and Mutation Operators 40
4.3.3. Algorithm Settings . 41
4.3.4. Experiment Definition 42

4.4. Tracking Experiment Results 42

5. Experiment Planning and Results 45
5.1. Stage 1 - Algorithm Selection 46

5.1.1. Results for Stage 1 . 46
5.2. Stage 2 - Optimization Experiments on Different Graph Sizes . . 50

5.2.1. Results for Stage 2 . 50
5.3. Stage 3 - Infection Spread for Specific Policy Sets 54

5.3.1. Results for Stage 3 . 55

6. Evaluation and Discussion 61
6.1. Evaluation of Stage 1 - Aggregation, Sampling and Algorithm

Choice . 61

IV

Contents

6.2. Experiments Stage 2 - Evaluation of Optimization and Finding
Interesting Individuals . 64

6.3. Experiments Stage 3 - Evaluation of the Location-Based Model 68
6.4. Summary of the Evaluation . 71

7. Conclusion and Future Work 75

Bibliography 77

A. Model and Simulation Parameters 87

V

List of Figures

2.1. Example objective space of a two objective optimization problem 15
2.2. An example objective space sorted into non-dominated fronts . . 17
2.3. Example of reference lines for NSGA-III 18
2.4. Example of a graph . 20

3.1. Example of bipartite graph and corresponding contact graph . . 25

4.1. Optimization and simulation workflow 35

5.1. Example of aggregating experiment fronts for 23-sampling . . . 47
5.2. Comparisons between algorithms and sampling rates 48
5.3. Comparison of objectives for NSGA-III 49
5.4. Comparison of different sampling strategies 51
5.5. Comparison of different graph sizes 52
5.6. Comparison between search and objective space 53
5.7. Example comparison for most relaxed policies 56
5.8. Comparison of individuals on both sides of the infection gap . . 57
5.9. Comparison of infected per location type 58
5.10. Comparison of susceptible per location type for infection gap . . 59
5.11. Breakdown of susceptible individuals visiting lectures 59

6.1. Scatterplot of infection peak and cumulative infections 66

VII

List of Tables

4.1. Graphs used for experiments . 38

5.1. Run-time values for different EMO algorithms 46
5.2. Individuals picked out for in-depth simulation 54

6.1. Hypervolume comparison for front aggregation 62
6.2. Hypervolume comparison of EMO algorithms 63
6.3. Chances of an individual’s fitness being significantly wrong . . . 65
6.4. Correlation matrix for all three objectives 67

A.1. Parameters of the graph model used for the university example. 87
A.2. Parameters used in the simulation. 88

IX

List of Acronyms

OvGU Otto-von-Guericke Universität Magdeburg

SARS-CoV Severe Acute Respiratory Syndrome Coronavirus

MERS-CoV Middle East Respiratory Syndrome Coronavirus

HIV Human Immunodeficiency Virus

A/H1N1 Influenza A virus subtype H1N1

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus-2

SIR model Susceptible-Infected-Recovered model

ODE ordinary differential equation

OSN online social network

LBSN location-based social network

ABM agent-based modeling

EA evolutionary algorithm

NN neural network

EMO evolutionary multi-objective optimization

NSGA-II Nondominated Sorting Genetic Algorithm II

NSGA-III Nondominated Sorting Genetic Algorithm III

MOEA/D Multi-objective Evolutionary Algorithm Based on Decomposition

DEAP Distributed Evolutionary Algorithms in Python

XI

1. Introduction

The specter of facing a large scale catastrophe is as old as humanity - be it wars,
natural catastrophes or plagues. Plagues are especially relevant considering
the current Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)
pandemic, which started in December 2019 [74] and is still ongoing in 2021
[75]. It lead to upheavals in large parts of society through the medical sector
trying to get ready for it and containment measures from wearing masks [47]
to a full "lockdown" [15, 86]. At the same time scientists work to overcome the
crisis: Researchers characterize SARS-CoV-2 symptoms [74] and recommend
countermeasures to the disease [41, 85, 47]. They also work to create effective
vaccines [65, 75].

On the other side, scientists employ models and simulations for understand-
ing the epidemic [34, 25]. These models allow prognoses about the epidemic
spread on national and international scales - to predict necessary containment
measures [66, 27]. Real world policy makers face another problem: Most coun-
termeasures taken come at a cost, be it economical [46, 2] or social [71]. Epi-
demic models need to consider this trade-off if they are to help policy makers
[64].

While there is a wide array of epidemic models, most rely similar basic as-
sumptions: Susceptible-Infected-Recovered models (SIR models) [40] for ex-
ample assume the population to be homogeneous and that every susceptible
individual has the same chance to infect themselves (the so called perfect mix-
ing assumption). Such models often fit real world data well and are simple to
build [34, 51]. However, they cannot capture all interaction patterns between
people. For that reason there are graph- and actor-based models [63, 38] that
map out the interactions between people or groups explicitly. Even those are
not always an intuitive model, especially if there is no prior data to use for
contact graphs [58].

We argue that there are scenarios - namely small communities - where neither
modeling approach is the optimal choice. As examples for small communities,

1

1. Introduction

consider small towns, hospitals, factories, ships [85] or universities [76, 32, 57].
These examples form a step between modeling interaction on an individual level
and nation-scale simulations. Nations and other large-scale populations consist
in turn of smaller communities. For this reason we expect the characteristics of
epidemic spread in smaller populations to give insight into large-scale behavior.

Small communities not only exhibit a smaller number of people compared
to nation-scale models. Due to the smaller size, the interaction dynamics
at play are easier to understand and interaction structures often shaped by
locations and group habits. Thus, homogeneous models with their perfect
mixing assumption are a poor fit. At the same time individual contact graphs
are counter-intuitive. Consider a student at university: Their daily routine
consists of, for example, going to lectures, eating in the cafeteria or exercising
in a sport course. Instead of deciding to meet specific people, they often visit
locations or attend events.

This observation leads us to propose a location-based epidemic graph model.
We model interactions via a bipartite graph of people visiting locations1 at
specific times. Our chosen example scenario is a simplified version of the Otto-
von-Guericke Universität Magdeburg (OvGU) campus over the course of one
semester. On one hand, a university campus is the small community we are
most familiar with, helping us build the model and gauge experiment results.
On the other hand, university puts the trade-off between gains and costs of
epidemic containment policies [64] into stark relief. Students and researchers
pay the same social and emotional toll for a "lockdown" as the population at
large [76, 32]. At the same time they are the people society expects to find
solutions to current and future epidemics.

Finding good trade-offs to this dilemma forms the second half of this thesis’s
contribution: We use evolutionary multi-objective optimization (EMO) [44] to
optimize a set of three containment policy parameters. These are the maximal
number of attendees for a lecture (klecture), the number of people allowed into
cafeteria at the same time (kfood) and maximal size of sport courses (ksport).
The optimization goal is to find parameter sets (also called individuals) with
the best fitness. In our case this means a minimal number of cumulative
infections (fcumulative), a low infection peak (fpeak) and least overall cost of dis-
allowed visits (fcost). Aside from maybe finding good policies for use in the real

1"Locations" can in this case be logical groupings like study groups or other events as well.

2

world, the main desired outcome of the optimization is a deeper understanding
of the simulation model.

First, Chapter 2 offers an overview over related work. It explains approaches
to epidemic simulation, relevant concepts of EMO and graph theory. Chapter
3 describes the model, from the basic graph model and the spread of infections
over time, to modeling policies with their costs and goals. Then follows Chap-
ter 4 with the actual implementation of the model and optimization framework.

In Chapter 5 we lay out the experiments conducted in three stages. The first
stage focuses on initial optimization runs in order to choose a good EMO algo-
rithm for further experiments. Next, the second stage expands on this differ-
ent model sizes and objective combinations. Lastly, there is a third stage with
more extensive simulation runs for policy parameters that showed interesting
characteristics in the previous stages.

The next Chapter then evaluates the experiment data, following the structure
of the previous Chapter with a Section for every stage followed by a summary
in Section 6.4.2 Lastly, Chapter 7 wraps up the thesis with a summary and an
overview over possible future work using the proposed model.

After experiments and their evaluation we find that - for the limited number of
experiments run - the model produces results in line with classical models and
our scenario assumptions. The simple structure of the location-based graph
model allows for a clear road to model extensions (e.g. testing, vaccinations)
or improvements where modeling turns out to be imprecise (e.g. surprisingly
few infections in the cafeteria). We further find that the gathered data on
infected and susceptible people visiting each location yields valuable insights
into epidemic spread. In the simulation runs analyzed in-depth we did not find
"superspreading" [49] locations. Instead we found the infection wave driven
by the sheer amount of meetings with infected distributed over the different
locations types. This observation matches the assumptions for the university
scenario, which did not include events expected to function as superspreaders.

For the optimization experiments we choose Nondominated Sorting Genetic
Algorithm III (NSGA-III) [24] as the main EMO algorithm. We find that
optimization yields valuable data on the model, as well as policies to take a
closer look at. In deciding the fitness of a policy parameter set we find running

2Due to the structure of Chapters 5 and 6 we recommend reading them interleaved by
alternating sections from each.

3

1. Introduction

the simulation 23 times per individual to yield dependable results. Any lower
sampling rate distorts the Pareto front (see Section 2.2 for a definition) of
the experiment. Furthermore, both fcumulative and fpeak conflict with the cost
objective fcost, making EMO a suitable approach for finding optimal policies.
Despite that we also conclude that there is no gain in using all three objectives
at the same time.

In summary the location-based epidemic model and optimizing policies via
EMO works well together. Starting from simple rules the model can be im-
proved and understood incrementally. This advantage makes further work on
the model valuable and the approach transferable to other scenarios. Beyond
that the location-based model can be used as a first step for classical models
by using it to generate contact graphs between individuals.

4

2. Related Work

2.1. Epidemics, their Modeling and Simulation

The modern world is more interconnected than ever before. Instant communi-
cation and the internet enable ideas and cultures to mix across the globe [53].
Cheap travel is even more important for the topic of epidemiology [28]. Trade
goods are shipped across vast distances and vacations in different countries
are affordable for many people. Along with that the reach of highly infectious
diseases increases dramatically [63, 1]. Pandemics - global epidemics - thus are
a serious threat to human lives.

Looking at the last decades there are several significant epidemics [62]: Human
Immunodeficiency Virus (HIV) (1981) for which there is still no complete
cure; Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (2002),
Influenza A virus subtype H1N1 (A/H1N1) (2009), Middle East Respiratory
Syndrome Coronavirus (MERS-CoV) (2012) and Ebola (2013); SARS-CoV-2
(2019) leading to a still ongoing crisis with a race between vaccinations and
virus mutations in 2021 [65, 75].

Looking at these epidemics [62] we note that so far the more lethal infections
(Ebola with >50% fatality rate [62]) were limited in the size of their outbreaks.
SARS-CoV-2 on the other hand is much more infectious, but with a lower fa-
tality rate [38]. The need to prepare for the next pandemic becomes obvious
when considering the possibility of a disease combining these two problems.
Aside from political or pharmaceutical measures this means creating and evalu-
ating models to understand and predict epidemic spread and the effectiveness
of countermeasures [15, 38, 81, 19, 34]. This fact remains true from fitting
these models to real-world data to understanding an ongoing epidemic. How-
ever, researchers often face the problem of sparse real-world data [78, 56]. In
addition to that there is the problem of choosing the right model, with differ-
ent approaches having different trade-offs. A good model then allows to ask
"What if?" by e.g. increasing infection or fatality rates.

5

2. Related Work

Throughout this thesis we use the current SARS-CoV-2 outbreak as the main
example. We keep modeling more general, but with infection and fatality
rates similar to SARS-CoV-2. A lot of new papers regarding models of epi-
demic spread are published (e.g. [15, 38, 81]) due to the current pandemic.
These publications include pitfalls like draft-stage papers showing up online
or duplicated research through similar approaches. We provide structure and
context to the fast-expanding literature by separating the next Subsections by
modeling approach.

2.1.1. The Classic SIR Model and Epidemic Spread

The SIR model is the most basic epidemic model. Kermack et al. [40] first
proposed it in 1927. The basic idea of the model starts with a population of
susceptible people (denoted S). Some sick individuals are introduced, which
form a group of infected I. It is assumed that people are homogeneous and
mix perfectly [58], leading to the same infection chance for every susceptible
individual. After some time infected stop being sick, filling the recovered group
R.

There are several common variants to this model. By adding a group of dead
people, who did not recover from the infection, one gets a SIRD model (Bailey,
1975 [7]). Instead of recovering after an infection, there is the option to become
susceptible again like with the seasonal flu. Last but not least, most sicknesses
have an incubation period, which is usually modeled via an Exposed group E.
The last two versions are called SIS and SEIR respectively [13].

There are several examples of SIR models regarding SARS-CoV-2: Chatterjee
et al. (2020)[19] build a SIRD model to predict infection peaks. Starting with
cumulative infection data from India and other states, they fit their model to
this data. Then Chatterjee et al. use the SIRD model to make predictions
regarding the effects of relaxing lockdown too early for the states in question.
Yang et al. (2020)[81] look at the original SARS-CoV-2 outbreak in China.
It coincided with a national holiday including a lot of travel [81]. They check
if the Chinese containment measures were effective using a modified SEIR
model that can represent travelers. Lastly, not all cases of SARS-CoV-2 show
symptoms [74]. Ivorra et al. (2020)[34] incorporate this into their model via
a H group of hidden, unreported infections. Using this model allows them to
attempt predictions for needed beds in hospitals, as well as gain insights into
epidemic spread by varying the rate of hidden infections.

6

2.1. Epidemics, their Modeling and Simulation

The mathematics underlying SIR models is a system of ordinary differential
equations (ODEs), which has both advantages and disadvantages [40, 58]:
Evaluating such a system via numerical algorithms is usually rather fast. How-
ever, the basic model lacks many details that become relevant in the real world.
Adding those details makes the ODE system much more complex. A total lock-
down is a simple example that shows this problem. It can be implemented by
cutting the infection path from S to I, making the equations actually simpler.
But total lockdown is not feasible for long, making consideration of partial
lockdown scenarios necessary. Compartments with different infection rates are
one potential solution to modeling different levels of contact graph connectiv-
ity [58]. Vrugt et al. (2020)[70] go even further and model social distancing
and quarantine using dynamic density functional theory. This highlights that
any significant extension of the SIR model complicates the underlying math-
ematics. Despite that Vrugt et al. [70] claim to prefer the extension to the
SIR model to alternatives due to its fast evaluation speed.

Aside from classical numerical methods for solving ODE systems (like the
Runge-Kutta methods [17]), there are more specialized solvers for SIR models.
Chemistry inspired several algorithms for this, most prominently the algorithm
by Gillespie and its derivatives [31, 73, 45]. They work for SIR models, because
ideal chemical reactions work on a perfect, homogeneous mixing assumption
as well [31]. Special about Gillespie’s algorithm is picking the size of the
next time-step dynamically depending on how fast the underlying population
changes currently. Another example is Block et al. (2020) [15], who use a
Monte-Carlo method where one individual randomly meets one other each
(small) time-step. For our university scenario, neither approach makes much
sense. Instead the real world gives us intuitive time-steps in the form of lecture
time-slots. For more details see Section 3.2.

2.1.2. Social Networks and the Topology of the Spread

Other modeling approaches offer different trade-offs and can be more intuitive
depending on the problem definition [58, 80]. Looking at people and their
interaction - which are how infections spread - both homogeneity and per-
fect mixing are flawed assumptions with regards to a population’s real-world
behavior [38, 20]. Instead a real population is composed of heterogeneous in-
dividuals interacting with other individuals [38]. One common way to model

7

2. Related Work

this behavior is via a contact graph, often called a social network in literature
[77, 18].

The field known as social network analysis has grown a lot in the last two
decades [18]. Online social networks OSNs are the main reason for this,
because they grew into an important part of society and provide ample data
for different kinds of research. To give an example of the use of simulated
OSNs [18]: Gatti de Bayser et al. (2014) [30] model the spread of information
via micro-blogging. Their model allows heterogeneous individuals by learning
behaviors via individual Markov chains. Very similar to the spread of general
information is analyzing dissemination of fake-news [18].

Despite not thematizing epidemic spread directly, this research is relevant to
our problem. This is because both normal contact graphs between people and
an OSN form clusters between individuals in the same manner [55]. Imag-
ine for example groups of university students with similar interests meeting
on the campus lawn in the sun or in an OSN of their choice if it’s raining.
Research into different kinds of networks confirms this observation: Newman
et al. (2003) [55] find that social networks are very different from other net-
works appearing in the natural sciences. Most importantly they observe that a
social network forms clusters significantly more often then randomness would
suggest.

However, small world networks [9] and other network types typically used for
abstract contact graphs [82] are often insufficient to model the complexities
of the real world [20]. Resorting to more expressive network types helps to
keep a better overview over different kinds of social interactions. Multiplex
networks - basically a set of several overlapping networks that form a greater
whole [20, 42] - are one example. Chung et al. (2020) [20] use them to better
model SARS-CoV-2 spread in a SEIR model. Their main idea is to connect ev-
ery significantly different form of social interaction as a separate sub-network.
This approach works for our university example as well: Student households,
lectures, tutorials, cafeteria use and similar then form their own smaller social
networks.

When modeling small communities, we observe another effect: People do not
only hang out with their social circles, but gather depending on locations.
Thus, even without using complex network types lectures, eating at the cafe-
teria and similar will form clusters on the contact graph. In the case of OSNs
such a network would be called a location-based social network (LBSN) as de-

8

2.1. Epidemics, their Modeling and Simulation

scribed by Kavak et al. (2019) [39]. They mention that such networks form a
bridge between digital networks and the physical world via image tagging, ge-
olocation and similar applications. Since they allow peer-to-peer interactions
and spatial relations between locations, the network model of Kavak et al. [39]
is more complex that the one in Chapter 3. Using location data in OSN anal-
ysis faces problems with acquisition of the relevant data and privacy concerns
[39]. Because of that we model the university scenario more abstractly.

Similar to solvers for the ODE representation of a SIR model, algorithms for
evaluating epidemic spread on contact graphs exist. Simple approaches look at
single time-steps. For every infected that meets a susceptible individual during
that time-step, propagate the infection with a fixed infection rate. After that
each infected recovers with a recovery rate as probability. Antulov-Fantulin
et al. (2018)[3] call this approach NaiveSIR. It can be easily parallelized via
running several simulations in at the same time and works on any kind of
contact graph.

Beyond that Antulov-Fantulin et al. suggest a faster algorithm, which they dub
FastSIR [3]. It exploits the underlying probabilistic variables of the NaiveSIR
approach by noticing that the number of individuals infected by one carrier
is binomially distributed. Thus, instead of checking every meeting between
infected and susceptible, they sample the distribution once for every infected.
The result of sampling determines the number of new infected, which are
sampled from the node’s neighbors. When the distributions are cached, this
method is much faster than NaiveSIR. This approach even allows an easier
visualization of the "generation of each infected. Note that the number of
meetings between individuals needs to be known for FastSIR [3]. In case of
a dynamic graph (esp. for the bipartite graph we model in Chapter 3) the
speed gains would likely be invalidated by having to re-calculate the number
of meetings every time-step.

More examples include Tolić et al. (2018) [72] who use weighted shortest
paths to estimate the likely spread of an infection through the network. Like
FastSIR, however, they assume a static contact graph.

9

2. Related Work

2.1.3. Agent-based Modeling - Autonomous
Heterogeneous Actors

Going further from SIR and graphs agent-based modeling (ABM) forms the
other end of the modeling spectrum. See Macal et al. (2010) [48] for an
introduction to the topic. Autonomous agents that interact with each other
to form complex group behavior characterize ABM [48]. Such agents are often
simple, but heterogeneous [48]. Relationships between them (similar to social
networks) and the environment in which they act often influence their behavior
[48]. In complexity these models range from relatively simple to very large and
complex. To mention some of the examples mentioned by Macal et al. [48]:
Modeling the stock market, supply chains, ancient civilizations and of course
epidemic spread.

Bankes (2002) [8] makes a case that ABM is a natural ontology for many social
problems superior to ODE modeling approaches. He further mentions emer-
gent behavior of groups of agents as a distinct advantage of ABM. One example
in regards to epidemic spread is the ability of identifying super-spreaders [69] -
agents that infect significantly more susceptible people than average [49]. Com-
pared to SIR models and (to a lesser degree) social networks there is another
advantage: We do not need real-world data or known contact graphs to model
realistic behavior [69], since it emerges from simple local agent behaviors.

However, an ABM approach has downsides as well [58, 69]. Despite not needing
a predetermined contact graph, agent behavior still needs to be modeled in a
way that produces useful - meaning realistic - results. Without a contact
graph or real world data validation of emergent behavior becomes difficult.
Rahmandad et al. (2008) [58] note that additionally ABM approaches often
have more and more sensitive parameters. In practice this means more work to
understand the model and how the chosen parameters affect it. Rahmandad
et al. further mention that there can be simulation runs where the epidemic
"fizzles out" due to initially infected agents not meeting enough people [58].
Due to all these considerations together more simulation runs are needed to
get dependable results for an ABM approach than for competing approaches
[69].

10

2.1. Epidemics, their Modeling and Simulation

2.1.4. Consideration of Modeling Approaches

Before starting to design a model for our university scenario in Chapter 3 we
compare the modeling approaches from the last Section: On the spectrum from
SIR models to ABM, we note that the contact graph and ABM approaches
share many similarities. Thus, we first compare an ODE based SIR model
approach to its alternatives in general.

Integrating our small community assumption into a SIR model is more complex
that for the more bottom-up modeling approaches. A suitable compartment
model [58] might be able to represent our university scenario. At the same
time it would curtail the ability to identify superspreaders or critical locations.
Rahmandad et al. (2008) [58] find that the results of between the different
modeling approaches are often similar enough to not make a difference. How-
ever, they further find that the modeling approaches diverge strongest when
the perfect mixing assumption of the SIR model is violated. Since the uni-
versity scenario as well as other small communities (e.g. hospitals) are often
clustered around specific locations (lecture halls, hospital rooms) this becomes
relevant in our case. To summarize: For our model a contact graph or ABM
approach offers a better trade-off than the classical SIR model.

In summary, graph-based approaches have several advantages: There are sim-
ple and efficient algorithms for evaluation [72, 3]. Some of those even generate
statistically reliable data with only one iteration of the simulation [72]. Visu-
alization of the graphs and results is straight-forward. Further, the existing
topology allows for easy analysis of topological interdependencies. Disadvan-
tages of graph-based approaches include that algorithms are built with the
assumption of a peer-to-peer contact graph. Constructing such a graph does
not work well with the location-centric view of our small community assump-
tion. More importantly, almost any algorithm assumes a static contact graph
[72, 3]. In our community example students visit different lectures each day
and self-quarantine on getting sick, making the resulting graph highly dy-
namic. Integrating these changes into algorithms optimized for static graphs
is too much work. Instead we focus on simple algorithms like NaiveSIR [3] for
initial exploration of our model.

On the other hand, an ABM approach simulates - depending on the level
of detail chosen - locations via the environment. Agents then move around in
them [48]. Building such an (abstract) environment from lecture lists and other
typical university locations is straightforward. However, agent behavior still

11

2. Related Work

needs empiric data and cannot be expressed as simple rules like movement on
a graph. In the same vein simulation and visualization are more complex than
for a graph-based approach. Aside from spatial relations between locations we
lose the ability to analyze the connection graph’s topology. Due to this we
need to gather run-time data manually and aggregate it. Most importantly,
containment policies can no longer depend on the graphs topology, making
them more complicated.

We choose a solution that lies between the contact graph and ABM approaches.
Chapter 3 outlines a bipartite graph, which connects locations and logical
groups to people visiting them. This modeling allows expressing the problem
with the ease of an abstract, low detail ABM model. At the same time we
retain the advantages of a graph-based solution. In particular, visualization
of the graph stays simple and agents in the simulation only "move" across
the graph. To model infection spread we choose the Naive SIR algorithm by
Antulov-Fantulin et al. (2018)[3], since it is simple and works out of the box
for a dynamic graph. See Section 3.1 for details. Policies can still depend
on how locations are visited (e.g. reducing the number of visitors), which is
close to real-world considerations [57]. Last but not least, the implementation
outlined in Chapter 4 takes advantage of this, since bipartite graphs are easier
to represent and optimize than general ones.

2.1.5. Characteristics and Trade-offs of Containment
Policies and Goals

In order to talk about containment measures for epidemics and their goals, we
need to first define what a policy is. In this thesis let a policy be a measure
taken to reduce epidemic spread in some form., most notably by constraining
the contact graph. We give a more exacting definition in Section 3.4.

Since we want to model a university scenario, the OvGU crisis plan[57] is a good
example of policies employed in the real-world. University leadership created a
plan with several stages to better handle the current outbreak of SARS-CoV-2.
It includes recommended measures for every stage of escalation. Without going
into too much detail, we find several areas where policy decisions are made.

• Firstly, the formation of a crisis unit for coordination and management.

• General hygiene rules, room sanitation and similar are implemented.
Note that such measures are difficult to fit into the more abstract model

12

2.2. Evolutionary Multi-Objective Optimization

designed in Chapter 3. Our model implements better hygiene conditions
via lower infection chances.

• Policies with the most direct impact are the guidelines for home office
and digital or hybrid teaching.

• Due to the missing infrastructure for the implementation of policies from
the previous point, procurement and setup of communication equipment
is facilitated.

• In practice, students and staff often have to register for room use via
calendar entries or scanning QR-codes to enable contact tracing.

However, all of these measures are associated with drawbacks [2, 64]. Examples
include straightforward monetary investments (for communication equipment)
and didactic problems due to digital lectures. Also, students potentially face
psychological problems due to social isolation, see Thakur et al. [71]. These
costs are difficult to quantify, making a more abstract model necessary, where
we assume that overall cost of a policy correlates with the edges cut from the
contact graph.

In summary, containment measures have three main goals: Firstly, minimize
the number of overall deaths due to the epidemic or in general keeping overall
infections down. Secondly, "flattening the curve" which means reducing the
amount of infections at any one point in time, thus reducing strain on the
healthcare system [64, 4]. This includes delaying the infection peak as well,
giving hospitals more time to prepare. Last but not least, keeping the cost of
containment measures down [64]. For details and the integration of these goals
into the model, see Section 3.4.

2.2. Evolutionary Multi-Objective Optimization

The containment goals for a hypothetical epidemic as outlined in the previous
Section are mutually exclusive [64]. As an example: The cost optimal case
of "business as usual" leads to a lot of infections. On the other hand, total
lockdown reduces infection spread, but costs increase along with that. Such op-
timizations with conflicting objectives are typical for real-world problems [44].
One method to find a set of interesting and optimal solutions is evolutionary
multi-objective optimization (EMO). An introduction to it - including the

13

2. Related Work

underlying evolutionary algorithm (EA) principles - can for example be found
in "Computational Intelligence: A Methodological Introduction" by Kruse et
al. [44]. The book further serves as basis of this Section.

A background and definition of "optimal" for this case is needed, before con-
sidering a method to optimize the problem at hand. Formally, we define a
search space S which contains the parameters to optimize [44]. In our example
this could be the maximum number of people per lecture hall or seats available
for the cafeteria. See Subsection 3.4 for the final search space. For every set
of parameters we can then calculate values for our objectives (see the goals in
the previous Section). They form an objective space O.

Taking two oi ∈ O with their respective si ∈ S the next problem is deciding
which one is objectively "better". For this the concept of dominance is in-
troduced [44]: o1 dominates o2 if it is as good as or better than o2 in every
objective and strictly better in at least one of them. For an example objective
space for a minimization problem, see Fig. 2.1.

Using the definition of dominance we call every individual not dominated by
any other individual Pareto optimal [44]. The set of all Pareto optimal solu-
tions forms the Pareto front. Any EMO algorithm strives to find this front.
A final decision which solutions in the front have the subjectively best trade-
offs or interesting characteristics is made after the optimization. Thus, EMO
methods are a-posteriori approaches.

However, finding optimal solutions is not the only criterion for a good EMO
algorithm [44]. Imagine all solutions being clustered on top of each other.
Making an informed decision becomes a lot harder in this case, because the
shape of the Pareto front and thus important characteristics of the problem
can be obscured. Due to this, diversity is another goal. It refers to the goal of
solutions distributed evenly across the entire Pareto front, .

Depending on the size of the population the Pareto front can contain a lot of
solutions, making it hard for decision makers to pick the right one. There are
several approaches to limit the number of optimal solutions or find interesting
ones (e.g. ε-Dominance [33]). The method relevant for Chapter 6 is knee
points. Fig. 2.1 shows one such point. Informally, it is characterized by
protruding from the rest of the Pareto front. If we chose any of its neighboring
solutions, at least one objective would become significantly worse. One way of
formulating a mathematical basis for this uses the angles between each solution

14

2.2. Evolutionary Multi-Objective Optimization

and its neighbors. See for example Branke et al. (2004) [16] to get an idea of
how to modify an existing EMO algorithm to use knee points.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

objective1

objective2

Figure 2.1.: Example objective space of a two objective optimization problem.
The Pareto Front is marked with red dots, a potential knee point as
part of the Pareto Front as green diamond and dominated solutions
in blue crosses.

In the case of EMO approaches biological jargon is typically used [44]: We
call the set of parameters of a solution the genome of an individual. Every
individual has a phenome, which is the model used to evaluate it (e.g. epi-
demic simulation with the respective parameters). Phenome evaluation then
yields the individual’s fitness, which is its objective values. Optimization itself
happens via creating a population P of individuals and performing selection
(keeping only good solutions around), mutation (change genomes in small ways
to get similar but different solutions) and crossover (combining solutions). Ex-
amples for EMO algorithms can be found in the next Subsections, starting with
Subsection 2.2.1. These Subsections also give an overview over the algorithms
used in Chapter 4. Their general scheme is very similar most of the time, and
can be found in Algorithm 1.

15

2. Related Work

Algorithm 1 Basic evolutionary algorithm
Initialize population P
while Termination condition is not met do
Select new individuals for reproduction
Create new population P ′ via crossover
Mutate individuals in P ′

Select new population from P ∩ P ′
end while

2.2.1. Nondominated Sorting Genetic Algorithm
II (NSGA-II)

In Algorithm 1 both crossover and mutation depend heavily on the problem
[44]. Especially, the encoding of solutions is relevant for them, while the num-
ber of objectives matters less. For this reason EMO algorithms focus mainly on
the selection operators that choose which solutions are crossed over and which
remain for the next generation. One of the most common EMO algorithms is
NSGA-II by Deb et al. (2002) [23].

Two core concepts form the population selection operator of NSGA-II [23]: A
fast algorithm for non-dominated sorting and crowding distance to preserve
solution diversity. The former focuses search towards optimality by separating
the population into non-dominated fronts. All individuals that are currently
non-dominated form the first front. Subsequently, all other individuals are
considered and those from the first front disregarded for the moment. The
second front then consists of the non-dominated remaining individuals. This
process is repeated to separate the entire population into fronts like in Fig.
2.2. Note that the implementation in the original paper [23] contains a version
of this procedure optimized for speed.

After having generated new individuals via crossover and mutation the pop-
ulation for the next generation is formed by taking the best fronts one after
the other until the population limit is reached [23]. Crowding distance comes
into play if there are fewer slots left than the current front has individuals.
It aims to keep solutions as diverse as possible to not converge on only one
part of the search space. The metric measures the distance between a solution
and its nearest neighbors in each objective. Larger crowding distances imply
an "alone" solution, making it potentially interesting. In case of a solution
being a minimum or maximum in one objective its crowding distance is set to

16

2.2. Evolutionary Multi-Objective Optimization

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

objective1

objective2

Figure 2.2.: An example objective space sorted into non-dominated fronts. The
first front consists of red dots, the second of blue crosses and the
last of green diamonds.

infinity. For all other solutions the normalized average distance between its
neighbors is used instead.

Together these two mechanics form a selection mechanism that is effective for
most basic EMO problems [23]. In summary, NSGA-II is a typical "go-to"
algorithm for EMO. It balances diversity and optimality as goals, while being
simple to understand and efficient.

2.2.2. Nondominated Sorting Genetic Algorithm
III (NSGA-III)

If an optimization problem has more objectives, classical EMO approaches like
NSGA-II start to struggle [24]. With too many objectives there are suddenly
far more non-dominated solutions. Measures like crowding distance become
less effective and efficient. Such problems with four or more objectives are
called many-objective optimization problems. Research into these problems is
distinct from multi-objective optimization due to the modified approach neces-
sary. One example of changing an EMO algorithm to work on many-objective
problems is NSGA-III, again by Deb et al. (2014) [24]1. It replaces crowd-

1Do not be confused by the "Part I" in the paper’s title. There is a follow-up paper[36]
that deals with constraint handling with regards to NSGA-III.

17

2. Related Work

ing distance with an approach using reference directions that works better for
more objectives.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

objective1

objective2

Figure 2.3.: An example with three reference lines in a problem with two ob-
jectives. In this case the reference lines are evenly distributed
between the outermost solutions. Each solution (red dot) is asso-
ciated with the closest reference line.

For an example how such reference lines look see Fig. 2.3. The original pa-
per [24] also suggests the approach of reference directions distributed uniformly
across all dimensions of the objective space. However, if we have special knowl-
edge of the problem domain, other distributions can make sense as well. Each
solution is then associated with the closest reference line.

Once this is done solution selection begins. Reference directions with fewer
associated individuals are less explored and more interesting [24]. Thus,
NSGA-III chooses the closest solution to each reference line first, starting with
the least populated directions. If more individuals need to be selected, the
reference lines are iterated again and again. From the second iteration the
algorithm chooses random individuals associated with the selected reference in
the hope of picking solutions between lines.

As an aside, the problem formulated in Chapter 3 (see esp. Subsection 3.4.1) is
not a many-objective problem due to having at most three objectives. Due to
the shape of the approximated Pareto front, NSGA-III [24] is still employed in
the experiment Chapter 5 for reasons outlined in Section 6.1 of the evaluation.

18

2.2. Evolutionary Multi-Objective Optimization

2.2.3. Multi-objective Evolutionary Algorithm Based on
Decomposition (MOEA/D)

Another approach simplifies the multi-objective problem into a scalarized
single-objective one [84]. This approach looses information by only return-
ing one solution and leaving weight choice for a linear scalarization to the
user. Multiple different scalarizations can be optimized at the same time to
alleviate this. One algorithm using this approach is MOEA/D by Zhang and
Li (2007) [84]. Among other advantages they claim lower computational com-
plexity than NSGA-II and diverse results even for small populations.

More precisely, MOEA/D is actually an optimization framework that works
with different kinds of scalarizations [84]. Aside from a weighted sum approach,
Tschebyscheffs method [84] is commonly used. For this explanation we assume
the weighted sum scalarization. Using it the total fitness F of an individual x
becomes F (x) =

∑n
i=1 λi ∗ fi. Here n is the number of objectives and λi are

the weights used.

MOEA/D achieves the titular decomposition into several single-objective prob-
lems via selecting several weight vectors λ1...λm [84]. Usually, those are uni-
formly distributed in what can be considered weight space. Each weight vector
has a neighborhood of weight vectors which are closest to it using euclidean
distance. Furthermore, MOEA/D keeps an archive EP 2 of non-dominated
solutions.

Initially, MOEA/D generates a population of one individual for each weight
vector [84]. During each generation of the algorithm these steps are performed
for each weight vector λi and associated individual xi:

• Select two individuals associated with random neighbors of λ1 and create
their offspring yi using crossover and mutation.

• For each neighbor λj of λi check if yi is better than xj. If yes, replace xj

with yi.

• Update EP by removing all solutions dominated by yi and adding yi if
it is not dominated by any remaining solution in EP .

Despite the effectiveness of MOEA/D and its low computational complexity
the algorithm as one major drawback: It is difficult to parallelize. For many

2Stands for external population, though elitist population would be a better description.

19

2. Related Work

problems the evaluation of the fitness function is the most time-intensive part
of run-time - one example being the epidemic simulation proposed in Chapter
3. Parallelizing the evaluation of multiple individuals is often a necessity to
get results in a reasonable time-frame. Algorithms like NSGA-II can do this
trivially by first generating a batch of new individuals and then evaluating them
at the same time. MOEA/D only generates one individual at a time, making
parallelization more difficult [54]. One approach is parallelizing the fitness
evaluation internally, which we describe in the implementation Chapter 4.
Other methods take advantage of splitting the population into several groups,
thus creating a parallelizable layer on top of MOEA/D [50].

2.3. General Graph Theory

Figure 2.4.: Example of a graph G = (V,E) with V = {1, 2, 3, 4} and E =

{{1, 2}, {1, 3}, {2, 3}, {2, 4}}.

Subsection 2.1.4 already hints that the next Chapters - design and implemen-
tation of the simulation model - rely on graphs. Some background on graph
theory can be found in Wilson’s "Introduction to Graph Theory" [79]. Math-
ematically speaking, a graph is a tuple G = (V,E) with V being vertices and
E ⊆ V × V the edges connecting them. For an example of a simple graph see
Fig. 2.4.

Bipartite graphs [79] are a form of graph especially relevant for the model
in Chapter 3. Instead of one set of vertices, this graph has two and takes
the form G = (V1, V2, E). In a bipartite graph every vertex from V1 can
only be connected to vertices from V2 and vice versa. Thus, E ⊂ V1 × V2.
Matching problems are a classical application of bipartite graphs. In them
e.g. prospective hires are assigned to open job positions in an optimal way.
Another advantage of bipartite graphs is that they are more restricted than a
general graph. We can use this structure to speed up solving graph problems
and make implementation easier. See Chapter 4 for details.

20

2.3. General Graph Theory

There are several common approaches to implement graphs, notably adjacency
matrices, adjacency lists (also called vertex lists) and edge lists [79]. We use the
later in Chapter 4 to build the final graph, so they warrant a short explanation.
Look again at the description of Fig. 2.4, because edge lists are close to the
mathematical formulation: E can be implemented as an array of tuples or
as two arrays (containing the start and end of each edge respectively). In
theory, V then becomes redundant in some cases, since we can reconstruct the
list of (connected) vertices from E. However, if data attributes are required
on vertices (like in Chapter 4), the list of vertices cannot be discarded. For
more details regarding graph frameworks used in social networks, see Camacho
(2020) [18].

We can consider the view-point of breaking large graphs into manageable parts
for either modeling or implementation. Multiplex Networks are an example of
this. Chung et al. (2020) [20] offers an introduction and we already mentioned
the concept in Subsection 2.1.2. Many more types of such networks exist.
Ultimately, they only serve as a lens for viewing the model in the next Chapter.
A more detailed overview and consideration would lead to far afield in this
thesis. For an introduction to different types of multilayer networks see Kivela
et al. 2014 [42].

2.3.1. Dynamic Graphs

A contact graph like in Subsection 2.1.2 can have another relevant property:
People do not meet the same individuals every day, so a contact graph changes
over time. Dynamic graph theory (see Kochkarov et al. 2015 [43]) deals with
such graphs.

It defines a dynamic graph Γ as a sequence of classical graphs without loops
or parallel edges [43]. A Gt+1 ∈ Γ is obtained from Gt by applying graph
operations like edge or node addition or removal. While a contact graph can
in theory be such a dynamic graph, any real-world example will contain loops
as soon as three people meet up at the same time. On the other hand, we
build the graph sequence introduced in Section 3.2 on a graph that can be
considered a directed mapping of visitors to locations. Thus, dynamic graph
theory offers a viable view-point to keep in mind when considering the epidemic
graph model in Chapter 3.

21

2. Related Work

2.3.2. Graph Generation

When working on graph problems (like a contact graph for epidemic spread)
we need a lot of different graphs, often with specific properties [21]. Proce-
dural generation helps with such simulation efforts, because it enables easy
generation of more graphs fitting the necessary scheme [21]. When working on
generating graphs, we need to keep in mind that the generation should be re-
producible. Otherwise, the tooling used is inconvenient and more importantly
experiment results irreproducible. Generally, there are two ways to approach
the problem: Top-down, which leads to black-box generation algorithms or
bottom-up using rules.

Examples for a top-down approach are graph generation using EAs by Bach
et al. (2013) [6] or neural networks (NNs) by Bacciua et al. (2020) [5]. These
methods main advantage is the ability to generate a lot of graphs fast and
mimic graphs with which the model was trained. In turn, if there are no
previous graphs to mimic, the algorithms can not be trained properly. Due
to their black-box nature we may have to validate necessary graph properties
afterwards as well. In absence of understandable generation rules reproducible
graphs require fixed random seeds for the algorithms. See also Section 4.1.

On the other hand, we can use simple rules to create a graph bottom-up: In
our university scenario there are n lectures with a specific time-slot. Each
lecture has one lecturer and m to k students attending. This method still
requires fixing the random seed for repeatability and cross-checking the final
graph for strange rule interactions. At the same time we can understand the
building blocks easily. For a more formalized approach see graph grammars
[26].

Regardless of approach, care needs to be taken, since a bad or misunderstood
generation method can lead to wrong data and thus invalid results [21].

22

3. Model Design

As mentioned in Chapter 1 our goal is a model adaptable to diverse small
communities. While we choose the university scenario for reasons of familiar-
ity, it does represent a community that was directly impacted by the recent
SARS-CoV-2 outbreak [76, 32]. See Subsection 2.1.5 for examples. To keep
the model simple, we only use the main OvGU campus as basis for the model
Furthermore, we build the model to be self-contained and no contact with the
outside model is represented - though the background mechanic in Section 3.3
can be said to include this.

We want to end up with a reusable model and not overspecialize. Thus, the
trade-off between relying on empiric data and extrapolation from simple as-
sumptions is especially relevant. On one hand, we can model the university
scenario by taking the lecture list and attendance - anonymized for privacy -
from the relevant system. Aside from avoiding the need to generate random
graphs, this approach creates a model very close to the actual problem. Re-
liance on empiric data faces the drawback of a lot of time spent on gathering
said data. In the other extreme, we can completely forgo empiric data. Such
a model is without actual relevance, since it does not model the university
scenario. A bottom-up generation method built on simple rules as mentioned
in Subsection 2.3.2 is a more sensible approach on this side of the spectrum.
Rule-based generation allows keeping the structures typical for the chosen sce-
nario while reducing the need for gathering empiric data.

We choose such a graph generation method for the final model. An actual
generation algorithm is part of the implementation Chapter and can be found
in Section 4.1. The current Chapter focuses on the theoretical foundations of
the model instead.

23

3. Model Design

3.1. The Graph Model

The trade-offs of different simulation approaches are discussed in Subsection
2.1.4. As a result of these deliberations we choose a bipartite graph model. In
principle, the idea is to model individuals and the locations (or logical groups)
they visit at specific times.

For a first look at the model, we assume a fixed point in time. Every such
time-step (details in Section 3.2) is represented via a bipartite graph of the
form G = (P,L,Evisits). The first entry of the graph’s tuple, P , is the set
of people we model. In our university scenario these are students, lecturers
(professors and their teams) and staff (esp. cafeteria workers). On the other
hand, L denotes the locations every person can visit. We include lecture
halls, cafeterias, shared student flats and sport courses in this set. Both of
these sets can be extended and modified for different scenarios and L is not
constrained to physical locations. One example for this is study groups with
fixed participants, but no fixed location.

Evisits ⊂ P × L is the relation of which individual visits which location, e.g.
students attending a course. The elements of Evisits form the edges of the
bipartite graph. Since a person cannot be in two places at once, the graph
could be constrained to only allow one location to be visited by one individual.
However, the time-steps described in the next Section are not atomic, but
represent a time interval. A student could leave a lecture early to grab a bite
to eat, creating two connections. Due to this and for the sake of simplifying
the graph generation in Section 4.1 we drop the constraint.

Different viewpoints on the graph are possible: The graph can be separated
on location or person type lines to get sub-graphs. Those form a multiplex
network as mentioned in Subsection 2.1.2 and Section 2.3. More importantly,
we can transform the bipartite graph into a classical contact graph by fully
connecting all individuals that visit a location at a given point in time. We
show an example of this transformation in Fig. 3.1.

The graph G in this simple form does not contain all data needed for simulating
an epidemic. First, we give every person an infection status like in a SIR model
[40]. Mathematically speaking, we represent this via a function state : P →
{S,E, I, R,D}. The practical implementation in Section 4.1 represents state
and similar functions as node and edge attributes. Recapitulating the states
used in the SIR model as already mentioned in Subsection 2.1.1: S is healthy

24

3.1. The Graph Model

Figure 3.1.: A simple bipartite graph and its transformed contact graph coun-
terpart. In this example Eve is infected, while Bob and Alice are
susceptible.

and susceptible, E is exposed but not yet infectious, I is infected and infectious,
R is recovered and D dead.

Further details about members of P and L can be represented via sim-
ilar functions One example is the type of location, typeL : L →
{foodplace, lecture, flat, ...} or infection rate for the location.

In order to find out how an epidemic spreads in our (still hypothetical) fixed
time-step, we look at each l ∈ L. The set of infected visiting the location
during the time-step are Il = {p ∈ P |state(p) = I, (p, l) ∈ Evisits}. Using the
number of ill visitors |Il| we can then calculate the infection chance for every
Sl = {p ∈ P |state(p) = S, (p, l) ∈ Evisits} depending on the location’s infection
rate. We do this by assuming that for each infected a susceptible person has
one chance to infect themselves with probability ptype(l) Iterating through all
locations yields a list of newly infected.

A simplified view of the simulation steps during a time-step can be:

• Every exposed individual becomes infectious with rate pE→I =
1

Numberofincubationtime−steps .

• An infection mechanic as described in the last paragraph.

• Every infected person may die with a chance of pI→D.

• Lastly, they may recover instead with rate pI→R

25

3. Model Design

3.2. Modeling Time-steps

After modeling infection spread in one time-step, we simulate consecutive time-
steps next. The overall spread of the epidemic can then be tracked by ob-
serving people’s changing states. However, individuals visit different places
during different time-steps. Thus, the graph G is more accurately described
as Gt = (P,L,Evisits,t). If the next time-step is t′, we use a different graph
Gt′ . Ideally, we want to generating a single graph and not new ones for every
time-step. Because of this the final implementation in Section 4.1 uses a dif-
ferent representation. In it Evisits,T ⊂ P × L× T is the relation of visits over
time, with T the set of all possible time-steps. The infection mechanic then
uses Evisits,t = {(p, l)|t′ = t, (p, l, t′) ∈ Evisits,T}

In the university scenario we find two natural subdivisions for time: Days of
the week and lecture time-slots, called blocks from now on. In the case of
OvGU these blocks are two hours long, which is the subdivision used for the
model as well. The first block starts at 7:00 and the last one at 19:00. Due
to that the final implementation (see Section 4.1) uses two edge attributes in
visits instead of the one attribute implied in the last paragraph. However, the
principle of only using edges matching the current time remains.

For reasons of simplicity, we set the maximal run-time of the simulation to
one semester, which is 27 weeks. The visit relation is further assumed to not
change between weeks, Evisits,t = Evisits,t+7. Alternatively, we terminate the
simulation if the epidemic has run its course, instead of waiting for the end of
the simulated semester. We consider infection spread over if there are no more
individuals with an E or I state.

3.3. Representing Sporadic Infections via a
Global Background Mechanic

Arguably, the infection model presented so far is incomplete and too simple.
There are especially two concerns: What happens with spontaneous interac-
tions between people outside the modeled locations (e.g. meeting on the lawn)?
Further, how do we represent interactions with the outside world introducing
new infections?

26

3.4. Modeling of Epidemic Containment Policies

In order to keep the model simple, a global infection mechanic similar to the
one used by Karaivanov (2020) [38] is introduced. We assume a small random
chance for meetings between infected and susceptible people. This assumption
leads to a fuzzier epidemic spread and reduces the chance of the infection
running into dead ends in the graph. It covers both concerns from the last
paragraph while keeping the model simple.

Each time-step this mechanic calculates the expected value of global meetings
between infected and susceptible people. For this it uses a global meeting
chance rglobal as well as a infection rate for such meetings pglobal. We then
calculate the expected value of new infections due to background meetings via
Eglobal(I, S) = pglobal ∗ rglobal ∗ |It|∗|St|

|P | . This value is rounded and the newly
infected sampled from the set of susceptible people.

3.4. Modeling of Epidemic Containment
Policies

Subsection 2.1.5 talks about containment policies for epidemic spread in the
real world. A clearer way of modeling such policies and their costs is needed to
model such containment adequately and be able to draw conclusions from the
model. For the remaining discussion we need to give a more precise definition
of policies and their types. We use these definitions in the rest of this thesis:

• Let a quarantine policy be any algorithm or rule set that blocks visits
between people and places (e.g. no food for students).

• Such policies can be further differentiated into location-based and people-
based quarantine policies with respective definitions.

• Another important kind of policy for containing epidemics is a testing
policy, which decides if an individual should be tested or not.

• Last but not least, a kind of policy that is rather controversial during
the current SARS-CoV-2 outbreak [61, 65]: Vaccination policies. It is
similar to a testing policy, but takes people out of the epidemic model
for good similar to recovery.

Note that a model using all of these policies ends up with three additional
states for people, inspired by Ivorra et al. (2020)[34]. T would mark tested

27

3. Model Design

but healthy individuals, while H would be untested, but infected people .
Lastly, V would stand for vaccinated individuals.

However, the model so far (including policy definition) is still an extreme
simplification of real world processes. The SARS-CoV-2 virus for example
could possibly be recontracted even after having recovered from it or being
vaccinated - after enough time has passed [11, 67]. Neither does it consider
suboptimal vaccination efficiency or people with prior health problems. While
implementing a SIS model like mentioned in Subsection 2.1.1 is possible, our
chosen time-frame for the simulation makes it far less relevant. We only sim-
ulate 27 weeks at most. The expected period of immunity for SARS-CoV-2 is
longer than that [35]. Thus, we do not model reinfection.

Before talking about which policies to explore and optimize, we assume three
fixed policies:

• If a person shows sufficient symptoms (which is assigned with a certain
chance on getting infected, see Table A.2), they self-quarantine and stay
at home.

• If a person shows symptoms, we assume they are tested positive. Thus,
the people living in the same flat are quarantined as well.

• If a lecturer shows symptoms, the lecture is canceled.

The model hard-codes these policies because they are ubiquitous whenever
policies are made in the real world [75].

A simulation of epidemic spread only serves as a starting point to actually find
an optimal way to contain it. In order to do that, we need to a look at which
policies make sense to optimize. For this we take a view away from university
for a second. Think about a small city with retail shops, barbers and other
small businesses. A policy-maker for such a community faces several main
questions, roughly separated by policy type:

• Which rules of thumb doe we give people to keep contact and spread risk
minimal? This question leads to person-based policies.

• Which businesses are closed (and when)? Which get strict hygiene rules?
These questions lead to location-based policies.

• Which people do we test? If someone is positive, who else should be
tested around them? (Testing policies)

28

3.4. Modeling of Epidemic Containment Policies

• Once we have medical personnel vaccinated, how do we distribute the
limited doses available? Do we force people to be vaccinated? (Vaccina-
tion policy)

While all of these are important questions, most go beyond the bounds of our
initial model. In turn they do not help with understanding the model. Thus.
we ignore person-based quarantine policies, since they do not interact as nicely
with our graph due to lacking person-person interaction. We further assume
people in general to be sensible and keep to adequate hygiene standards with-
out policy optimization offering significant gains. Testing and vaccination are
not modeled at this point either to keep the model simple. While implement-
ing them can be done via adding more attributes to people, the additional
complexity breaks the scope of this thesis - even if the resulting data would be
interesting.

After discarding several types of policies, we remain with one ideal starting
point for policy optimization in our model: A location-based quarantine pol-
icy that decides if a location can be open and how many people may go there
during each time-step. Limiting locations by number of visitors allows for the
advantage of using hard numbers. Using visitor density (people per square
meter) yields no gain over the plain visitor limit. Both methods can be trans-
formed into each other, but the density approach needs additional attributes
on locations. In practice, the chosen method leads to three policies:

• Closing lectures with more than klecture attendees.

• Letting at most kfood visitors into each cafeteria per time-slot. If n >

kfood people want to eat, sample kfood from the n visitors to simulate
random arrival times.

• Closing sports courses above ksport attendees.

We optimize these parameters via EMO as described in Section 2.2, with the
model itself serving as a black-box fitness function. These three policies look
simple on first glance. Despite that, finding optimal parameters for them is
a relevant problem, because similar policies are common in the real world
[75, 57]. Thus, the results of a sufficiently detailed model can be used as
basis for decision making. The Pareto front of the resulting problem can give
further insights into its overall shape and other avenues of research. Last but
not least, a simple optimization problem allows for tweaking model parameters
and learning more about the model itself more easily.

29

3. Model Design

3.4.1. Optimization Goals

We already discuss the three main goals of epidemic containment in Subsection
2.1.5. With a model on hand we can conceive several variations of these goals:

• We can view the number of cumulative infections either as the number of
deaths or the combined number of recovered and dead individuals. Due
to the model not considering prior health problems or higher suscepti-
bility to a lethal infection, both are equal. To be more precise: For an
infinite population the rate of recovered to dead people is fixed by their
respective unchanging probabilities.

• The infection peak is defined as the highest number of infections in any
one time-step. Similar to the number of cumulative infections we can
consider either the number of infected or the number of infected and
exposed people.

• The time-step of the infection peak, which is a distinct possible fitness
from the size of the peak.

• The cumulative cost of all policies enforced, together with the cost of
self-quarantine and similar measures.

Ideally, we choose no more than three criteria to guide optimization. The
reason for this is EMO algorithms being optimized for these numbers of criteria
[44, 24]. Visualization of the Pareto front beyond three dimensions is more
difficult as well. Furthermore, too many criteria can obscure insights gained
into the model.

We discard peak time as a goal due to it being less important than peak size
for the scenario considered - the health care system is simply assumed to be as
prepared as possible. The three other objectives are left. For both peak size
and cumulative infections we choose the second variant. While peak size and
cumulative infections do not necessarily depend on each other directly, they
might not conflict. Because of this we cannot be sure adding both objectives
is beneficial without running tests. In the worst case both objectives can
together marginalize the cost objective. As a result three combinations will be
evaluated starting in Chapter 5: We pair the cost objective with either peak
size, cumulative infections or both.

30

3.4. Modeling of Epidemic Containment Policies

Equations 3.1 to 3.3 contain a more precise formulation of these objectives.
The first one defines the cumulative objective fcumulative via the population
state in the last time-step.

fcumulative = |{p|p ∈ P, statetlast(p) ∈ {E, I,R,D}}| (3.1)

Our informal description of this objective in the beginning of the current sec-
tion only considers recovered and dead people. On the other hand, Equation
3.1 counts exposed and infected as well. The reason for this is the simulation
of the university scenario being cut off after one semester (see Section 3.2)
without guarantee that the epidemic has run its course. Equation 3.2 defines
fpeak in a similar way, but takes the maximum of infected and exposed people
over all time-steps.

fpeak = max
t
|{p|p ∈ P, statet(p) ∈ {E, I}}| (3.2)

Lastly, we describe an idealized fcost in Equation 3.3. Breaking it apart, ϕ
denotes a policy (or multiple) as described in Section 3.4.2 and ϕ(Evisits,t) is
the set of allowed visits in time-step t. Then Evisits,t \ ϕ(Evisits,t) is the set
of disallowed visits under the current policies in the current time-step. We
average the cost for each disallowed visit (as described in Section 3.4.3) over
all time-steps, with T being the total number of time-steps. The actual, more
complex version used in the implementation can be found in Subsection 3.4.3,
Equation 3.4.

fcost =

∑
t∈T

∑
e∈Evisits,t\ϕ(Evisits,t)

cost(e)

T
(3.3)

3.4.2. A Policy Model for the Graph Representation

Integration of the policies discussed in this Section so far happens by consid-
ering them as filters for Evisits, the visit relation of the graph. We consider
ϕ(Evisits) = E ′visits ⊆ Evisits a policy, which returns an "active" sub-set of the
current visits. Any relation elements thrown out by policies are no longer con-
sidered for the time-step. This approach is still a simplification. The policy

31

3. Model Design

ϕ can use all attributes and other information of the graph (infection states,
location types, ...) - some of which are hidden in real-world scenarios. We gain
the final sub-set of active visits for each time-step by applying policies after
another. Filtering visits for the correct day of the week and lecture time-slot
works like this as well. However, these two special policies do not come with
an associated cost unlike the normal policies described in the next Subsection.

There is another way of looking at applying multiple policies at the same
time: The resulting sub-set is the intersection of visits allowed by each pol-
icy. Mathematically, this means ϕ1(ϕ2(Evisits)) = ϕ1(Evisits) ∩ ϕ2(Evisits) =

ϕ2(ϕ1(Evisits)). Since set intersection is commutative, policy application is as
well. Cumulative policies have the advantage of enabling us to reordering them
for better performance in Chapter 4.

3.4.3. A Cost Model for Policies

After modeling location-based policies, we define their costs next. In Sub-
section 2.1.5 we noted that these costs come in many variations [57, 64, 76].
However, optimization of the objectives named in Subsection 3.4.1 needs quan-
tified costs.

The easiest way to do this is assigning each edge in the graph (corresponding
to a specific visits to a location) an associated cost. We model edges having
different levels of importance by different assigned costs. Mathematically, let
costEvisits

: Evisits → R denote the importance of an edge. The total cost in
one time-step (see Equation 3.3) is the sum of costs over all visits that are cut
off by policies.

However, we only sum costs for the three policies associated with the optimized
parameters (klecture, kfood, ksport). Initial tests showed that adding the costs of
edges cut by static policies (self-quarantine, lecture cancellation, ...) dominates
the final cost by a wide margin. Due to this optimization is skewed and ignores
the actually interesting cost-factors. We work around this through special
handling of edges removed by static policies.

In the final model we disregard self-quarantine cost-wise. It is observed through
its ripple effects instead. The resulting quarantine of flat mates and lec-
tures are counted and multiplied by a constant factor (costlecture−quarantine =

|lectures_canceled| ∗ clecture−quarantine). For the sake of simplicity and to bet-
ter see the effects of active policies, we set these constants to cflat−quarantine =

32

3.5. Summary of the Complete Model

clecture−quarantine = 0 for the experiments described in Chapter 5. The final
modified cost objective is then given by Equation 3.4 with coststatic−policies =

costlecture−quarantine + costflat−quarantine.

fcost =

∑
t∈T ((

∑
e∈Evisits,t\ϕ(Evisits,t)

cost(e)) + coststatic−policies)

T
(3.4)

Another problem with the cost model is that cost values skyrocket if summed
over all time-steps. For this reason we choose the cost objective (Equations
3.4) as the average cost over simulated time-steps. This approach has the
advantage of keeping cost values easier to interpret. However, we loose some
information as well: Longer epidemics with high cost can be equal to shorter
periods with lower costs. Initial test runs of the simulation show the epidemic
infecting the entire population before cut-off time - except for a total lockdown
scenario. Because of this we consider information on the total length of the
epidemic less important for the formulated optimization objective.

3.5. Summary of the Complete Model

Finally, we need to integrate the modeling decisions from this Chapter into a
single algorithm. To summarize: We use a bipartite graph of people visiting
locations. The modeled simulation time is - in line with the university exam-
ple - divided into weeks, days and blocks for a total of one semester. Infection
happens via infected and susceptible people visiting the same locations with an
infection rate depending on the location. At the same time, we abstract away
random meetings and outside interaction via a global background infection me-
chanic. Last but not least, there is a cost model for containment policies along
with several "common sense" quarantine measures. A summarized overview
of the simulation procedure can be found in algorithm 2.

3.5.1. Parameters

Before we continue with the actual implementation in Chapter 4, we should
discuss the chosen model parameters that are not implementation specific. An
overview over the parameters used for the underlying graph is found in Table

33

3. Model Design

Algorithm 2 Summary of the epidemic simulation model
Initialize graph
Initial infections
for Each week of the semester do

for Each day of the week do
Exposed → Infected
costday = 0

for Each lecture time-slot of the day do
Find relevant visits for day and block under policies and quarantine
Add their cost to the total: costday+ = costpolicies.
Group visits by location and find the number of infected at each
Roll infection chance for susceptible depending on infected at location

end for
Run global background infection
Infected → Dead
Infected → Recovered
Gather statistics for current day
if Termination condition is met then
Write statistics to disk
Stop execution

end if
end for

end for

A.1 along with reasoning for the choices. The parameters for the epidemic
simulation are in Table A.2. Both can be found in Appendix A.

Some highlights include: There are 10000 people simulated of which 7500 are
students, 1500 lecturers and the rest staff. We simulate slightly over 2300
lectures, 75 sport courses, 4 cafeterias and as many flats as needed - all with
respective minimal and maximal sizes. Furthermore, we define possible days
and times for eating at the cafeteria and sport courses.

On the epidemic side, base infection rate is set to 50% [38], with adapted
higher rates for sport and lower ones for cafeteria visits. There are 25 initial
infections. For exposed people the infection breaks out after roughly 5 days
[38], with 50% developing symptoms [74]. The total rate of removal for infected
(which is recovery and death rate together) is 20% [38].

34

4. Implementation

The implementation of the model1 described in the previous Chapter is split
into four parts: In a first Section we describe the data structures representing
the graph as well as its generation. Next are implementation details of the
algorithm shown in Section 3.5, including performance optimizations. After
that, Section 4.3 describes the learning framework used for optimizing the
policies. Lastly, we discuss run-time data gathered from the simulation and
other utilities.

Figure 4.1.: Shows the workflow for either an optimization run with internal
usage of the simulation (solid arrows) or an individual simula-
tion run (dashed arrows). In the rest of this thesis iterations are
multiple runs of the same optimization with the same starting pa-
rameters. Sampling on the other hand refers to an individual’s
fitness running the simulation multiple times for more accurate
results.

Each of those Sections can be found in Fig. 4.1 as well. It gives an overview
over the general process of running an optimization or individual simulations.

1Sorce code can be found at https://gitlab.com/covid-simulation/simulation-py.

35

https://gitlab.com/covid-simulation/simulation-py

4. Implementation

Note that the parts of the implementation build on each other. The simula-
tion needs graph generation. In turn, the optimization algorithm samples the
simulation to obtain fitness values for individuals. Evaluation is based on the
data gathered according to Section 4.4.

4.1. Graph Representation and Generation

The graph model described in Chapter 3 first needs to be converted into a
form usable by computers. There are several possible ways to do so mentioned
in Section 2.3 on graph theory. We choose edge lists for our use-case. Reasons
for hand-rolling such an implementation instead of relying on existing graph
software are two-fold: First, representing a bipartite graph via edge lists is
straightforward and simple. General purpose frameworks optimize for many
different types of graphs, making them more complex and less optimized for
our specific use case. On the other hand, an implementation with basic lists
at its heart offers transparency for understanding and modifying the model,
as well as optimizing performance.

For the same reasons we choose Python as implementation language. It offers
rapid prototyping speed with good performance through use of appropriate li-
braries. We use Python 3.6.82 due to the compute cluster used for experiments
running this Python version.

Furthermore, Pandas [60] is the main implementation library. People, locations
and visits are each modeled as one dataframe (the Pandas equivalent of a
database table). Pandas’s underlying implementation offers good performance.
The library can also be used for analyzing the resulting data without switching
to something else.

4.1.1. Generation Algorithm

While our model in theory supports graphs of arbitrary complexity, we first
need to verify the validity of the chosen approach. For this we need a simpler
initial graph. Thus, we choose a bottom-up graph generation approach with
simple rules. See Section 2.3.2 for a recap of pros and cons this approach to
graph generation offers.

2https://documentation.help/Python-3.6.8/index4.html

36

https://documentation.help/Python-3.6.8/index4.html

4.1. Graph Representation and Generation

First, we generate the list of people. In order to avoid naming individuals
as "person-1", we use a list of names3. Generation shuffles the list and then
samples the needed amount of names from it. The 10000 initial names are
split by type according to the numbers in Table A.1. We insert each person
into the people dataframe with name, type, a state of S and the boolean flag
for having symptoms set to false.

Locations work slightly different (except for cafeterias, which are read from a
short name file as well). They are generated together with the relevant visits
by applying a generation rule. For example lectures: For each lecture number,
we choose a lecturer and time (day and slot). Their visit is added to the visits
list with

• the lecturer’s name,

• the location’s name (e.g. lecture-1),

• day and time-slot,

• cost of removing the edge and

• inverse infection rate (1− infection_rate).

We prefer inverse infection rates for performance reasons. See Section 4.2 for
details. In the same vein, we pick a random number of lecture attendees from
the students. As a last step, the lecture location is inserted into its table, with
name, type and degree (the number of people visiting it). This degree helps
with enacting policies later.

Overall, visits are generated according to these rules:

• Lectures as described in the last paragraph.

• We generate sport courses the same way, but they have no fixed "leader".

• For each cafeteria every student and lecturer picks a random time during
"eating hours" to eat there. Collisions with other events are not checked.
See Section 3.1 for reasons.

• Staff works in a cafeteria during eating hours.

3The file for them taken from
https://www.usna.edu/Users/cs/roche/courses/s15si335/proj1/files.php%3Ff=names.txt.html
on the 19th of February 2021.

37

https://www.usna.edu/Users/cs/roche/courses/s15si335/proj1/files.php%3Ff=names.txt.html

4. Implementation

Table 4.1.: Graphs used for experiments in this thesis. Note that during pro-
totyping we used different random seeds as well.

Graph Seed Graph Scaling Cap Scaling
0 0.15 0.5
0 0.5 0.75
0 1 1

• Students share a flat in the last time-slot (after hours). We sample the
number per flat from a predefined range similar to lectures and sport
courses.

4.1.2. Graph Scaling and Parameters

The full graph (10,000 people, 4500 locations, 240,000 visits) is quite large
for rapid prototyping and model exploration. For this reason we introduce
two scaling parameters used to modify graph generation without having to de-
fine even more parameter sets. Firstly, graph_scaling ∈ (0, 1] proportionally
scales down the number of people of all types, lectures, sport courses and cafe-
terias (with a minimum of 1 of each remaining). Next, cap_scaling ∈ (0, 1]

decides the maximal number of attendees for lectures and sport courses.

Thus, three values uniquely specify each graph generated as described in this
Section: The two scaling parameters and a fixed random seed used to initialize
the random number generator before producing the graph. During experiments
in Chapter 5 we employ the graphs in Table 4.1.

4.2. Implementation of the Epidemic
Simulation

This Section is an extension of the algorithm summary in Section 3.5. The ac-
tual implementation of the epidemic simulation is very close to this description.
Thus, we only highlight some implementation specific details here.

As mentioned in the previous Section, we use three Pandas dataframes for
people, locations and visits. Since their use is very similarly to relational
database tables, we can think of the implementation in terms of database

38

4.2. Implementation of the Epidemic Simulation

operations: For a transition of exposed people to infected we "select" all people
with a state of E. A random number decides for each person if they transition
or not. In the same vein, infected people visiting each location are found with
a "join" and policies reduce visits by returning a "view" with less permissive
"where" clause.

We further built several wrappers around the central simulate function. Sev-
eral simulations can be run in parallel for in-depth evaluation of containment
parameter sets as in Sections 5.3 and 6.3. Optimization instead uses a wrap-
per as fitness function which samples the simulation multiple times and returns
the (independent) medians of each objective. The necessity of this approach
appears in the end of Subsection 2.1.3 and we discuss it in Chapters 5 and 6
as well.

4.2.1. Performance Optimizations for the Implementation

Parallel execution is the first go-to for a fast simulation. Beyond that we need
to avoid other trivial slowdowns. Thus, we implement several performance
optimizations after profiling the simulation’s execution.

We already introduced use of 1−infection_rate in Subsection 4.1.1. Its math-
ematical background considers the total infection chance for a susceptible in-
dividual visiting a location: For one infected, this infection rate is the location
specific infection_rate. With more infected individuals we can more easily
calculate the chance for a susceptible to avoid infection: (1−infection_rate)n,
with n being the number of infected at the location. Thus, the final in-
fection rate is total_infection_rate = 1 − (1 − infection_rate)n = 1 −
inverse_infection_raten.

This alternative formula for infection further takes better advantage of vector-
ized Pandas operations. In a similar vein, proper library usage (correct indices
to speed up joins) and advantageous ordering of policy and quarantine applica-
tion speed up execution. Further enhancements include caching of unchanging
values (e.g. which lectures are banned by policy) and - relevant for the next
Section - caching of fitness values across threads.

39

4. Implementation

4.3. Parameter Optimization with jMetalPy

Several python libraries offer implementations of EMO algorithms with cus-
tom problem definitions and genetic operators. Examples include DEAP [59],
pyMOO [14] or jMetalPy [12]. All contenders fulfill most of our criteria, in-
cluding parallel implementations of the respective algorithms - NSGA-II [23],
NSGA-III [24, 36] and MOEA/D [84]. Thus, we choose jMetalPy due to a
preference for its interface.

This Section covers the problem definition in jMetalPy, crossover and mutation
operators, parameters for the EMO algorithms and implementation of a simple
experiment wrapper.

4.3.1. Problem Definition

Our basic problem definition (PolicyParameterProblem) inherits from jMet-
alPy’s IntegerProblem. It specifies the number of variables to optimize with
an upper and lower bound for each. Lectures and sport courses are shut down
completely, if the lowest value is chosen. The highest value allows all visits in-
stead. Cafeterias have a lower bound of 0. We make an educated guess for the
upper bound of 500 based on the average number of visits. EMO algorithms
optimize away too high values for cafeteria attendance at the cost of a larger
total search space.

Depending on the experiment (see Subsection 4.3.4) we pass to the problem,
either two or three (float) objectives are used. Valid objective combinations are
explained in Subsection 3.4.1. The fitness function for optimization (Section
4.2) depends on the samples desired and EMO algorithm used. Especially, if
we choose MOEA/D, fitness evaluation runs in parallel, since the algorithm
itself is sequential.

4.3.2. Simple Crossover and Mutation Operators

Our implementation prefers simple crossover and mutation operators.

As mutation operator we choose an integer neighborhood mutation. It picks
one of the three variables of the solution (called v for now). With a chance
of p = 0.3 a new value for v is picked from the allowed range. In the other

40

4.3. Parameter Optimization with jMetalPy

case, we add a random integer offset to the variable by doing v = v + n;n ∈
{−5, ...,−1, 1, ..., 5}.

Crossover uses a single point crossover implementation: Each child inherits the
first k ∈ {1, 2} of its variables from one parent. The remaining 3− k variables
come from the other. Due to the small number of variables, any other value
for k will lead to both children being identical to their parents. Furthermore,
the MOEA/D implementation offered by jMetalPy uses three parent crossover.
We handle this via applying our single point crossover pairwise, leading to six
total offspring.

Both operators may seem overly simple on first glance. Since the graph model
proposed in this thesis is simple, this is intentional. Our model offers a max-
imal search space consisting of 95 ∗ 35 ∗ 500 = 1 662 500 possible individuals.
Compared to other - often continuous [29] - EMO problems this is compar-
atively small [44]. Thus, our chosen operators present a trade-off between
implementation speed and retaining effectiveness.

4.3.3. Algorithm Settings

Many of the settings used for the three EMO algorithms are set via the ex-
periment settings detailed in the next Subsection. For all other values we pre-
fer sensible defaults. We consider any optimization of the algorithm’s hyper-
parameters out of scope for this thesis.

While NSGA-II [23] needs no further parameters, NSGA-III [24] requires refer-
ence directions. The jMetalPy framework offers an implementation for uniform
reference directions in all objective dimensions. Both two and three objective
runs use 12 total reference directions.

Similarly, MOEA/D [84] needs (evenly distributed) weight vectors. For two
objectives jMetalPy has a built in implementation. Three objectives require
manual generation of a weight vector file in a format the framework can read.
Importantly, this generation constrains the population size for MOEA/D. Our
implementation expects a population size with an integer square root for easier
weight distribution in three objective problems.

We use the implementation of Tschebyscheff scalarization [84] provided by
jMetalPy as an aggregation function for MOEA/D. The neighborhood size is
20, with a chance of 0.9 for picking a mating partner from the neighborhood.

41

4. Implementation

Conversely, the chance of picking the second crossover individual from the
whole population is 0.1. Lastly, a new solution may at most replace two
individuals.

4.3.4. Experiment Definition

Wrapping up the implementation of the optimization algorithms, experiment
setup deserves a mention. Similar to graph specification via a random seed
and the two scaling parameters (see Subsection 4.1.2), we define a datatype to
fully describe an optimization experiment. It consists of these variables:

• Size of the population for the EMO algorithms.

• Number of generations to run the optimization. Note that jMetalPy
algorithms take number of evaluations as stopping criterion. We get
these as the product of number of generations times population size.

• How many samples to take for deciding an individual’s fitness. See Sec-
tion 4.2 for details and Section 6.2 for an evaluation.

• A string deciding which algorithm to use.

• Which set of objectives to use.

• The specification for the graph.

• How many times to run the whole experiment. This parameter becomes
relevant in Chapter 5 on experiment planning.

We build a wrapper to run specific experiments via an experiment list as
well. Every experiment stage in the next Chapter is defined by such a list.
The script executes one of the experiments if supplied with list name and
experiment number4. A similar setup exists for many simulations of a single
individual. Section 6.3 uses it to better understand the model by looking at
specific individuals.

4.4. Tracking Experiment Results

Experiments need to gather data about their execution and write it to disk
for later evaluation. Optimization experiments do this by logging individuals

4Along with execution details like maximal number of CPU cores to use.

42

4.4. Tracking Experiment Results

and their fitness for every generation of the algorithm to a sub-folder. The
final population, its fitness values and a plot for easier sighting of the results
end up in the experiment’s main folder. This experiment folder needs to be
unique for every experiment to allow running several of them in parallel. We
facilitate this by using the experiment specification as a basis for generating
the path. As added benefit important experiment parameters become obvious
on the file system’s folder structure without having to consult the experiment
list.

The simulation itself gathers run-time data to better understand epidemic
spread for the model as well. "Basic" logging includes the number of people
in every state (I, S, ...), as well as cumulative infections up to the time-
step. These values determine the fitness of a set of policy parameters. If the
simulation runs to gather data about specific parameter sets (e.g. knee points
from the approximated Pareto front), we can set a flag to write these values
to disk for later analysis.

In the same vein, we implement advanced statistics. With them we log the
names of all infected and susceptible people for every lecture time-slot and
location. While this amounts to a lot of data, identifying locations critical to
epidemic spread becomes possible by analyzing it.

Aggregation scripts for the acquired data, plotting helpers and statistics are
implemented along with the simulation. Details can be found in Chapter 6
on evaluation of obtained results. Notably, we use pymoo’s [14] hypervolume
calculation method for evaluation, since jMetalPy does not offer an easy to use
alternative.

43

5. Experiment Planning and
Results

Experiments in this thesis have the main goal of a better understanding of
characteristics and viability of the defined model. Thus, we use the EMO al-
gorithms as described in the last Chapter with different graphs and settings.
The resulting Pareto front approximations are then analyzed. In a last step,
"interesting" single individuals are picked from these fronts and their simula-
tion data looked at in more depth. Interesting means in this case individuals
at extremes, gaps, knee points or with other characteristics we consider worth
looking at.

For a final list of experiments, we need to consider combinations of these points:

• Graph sizes. Here we use the three graphs mentioned in Table 4.1 for
experiments.

• All three possible objective combinations (fcost with either fcumulative,
fpeak or both) from Subsection 3.4.1 need an evaluation.

• We compare the three algorithms introduced in Section 2.2. This com-
parison is relevant, because we need to choose one of the algorithms for
further analysis.

• How many samples are needed for fitness evaluations to remove "lucky"
individuals from the results? A lucky individual has all its fitness samples
at the lower end of the real distribution. Thus, optimization thinks it is
much fitter than it acutally is. For evaluating this effect, strategies with
1, 7 and 23 samples are considered.

• Graphs with different random seeds. However, in the scope of this thesis
we consider only one graph seed (see Table 4.1).

Even with only one graph seed, these points lead to a total of 81 combina-
tions. To reduce this number, we split experiments into three phases which

45

5. Experiment Planning and Results

are explained in detail in the next Subsections. The idea is to first make an
algorithm choice on a reduced graph. Both phases after that then deal with
the main experiments using the chosen algorithm and individual evaluation.

5.1. Stage 1 - Algorithm Selection

For an informed choice between NSGA-II, NSGA-III and MOEA/D, this ex-
periment phase focuses on the medium graph (Table 4.1) with 5000 people.
We choose this graph for being the middle trade-off between run-time of ex-
periments (due to graph size) and representing our university scenario better.
For the medium graph we run all combinations of algorithms and objectives
with 1-sampled and 23-sampled fitness. This leads to 18 experiments.

Note that the low sample rate proved subpar during development, with "lucky"
(as defined in the beginning of the Chapter) individuals dominating the front.
See Section 6.1 for details. For this reason we run the optimization only once
for the 1-sampling in order to get comparison data and explore if one of the
algorithms can mitigate the problem. Experiments for the high sample rate run
3 times. However, we canceled the MOEA/D experiment after one iteration
on account of excessive run-time. Multiple iterations are aggregated and we
consider the randomness of the resulting fronts in the evaluation, Section 6.1.

5.1.1. Results for Stage 1

After running the entire experiment list for the first stage we sight the results.
The chosen algorithms take a vastly different time to complete. Thus, an
overview over their averaged run-times can be found in Table 5.1.

Table 5.1.: The rounded run-time values for each EMO algorithm and sam-
pling, averaged over objectives. Note that the three objective runs
are typically slower that their counterparts.

Algorithm 1-sampling Time 23-sampling Time
NSGA-II 0d 2:04h ± 0:30h 2d 21:58h ± 17:22h
NSGA-III 0d 3:44h ± 0:07h 2d 7:06h ± 11:11h
MOEA/D 10d 16:18h ± 9:30h 17d 18:39h ± 2d 19:21h

46

5.1. Stage 1 - Algorithm Selection

In the case of experiments running multiple times, we aggregate iterations
into a combined front. We obtain these aggregated fronts by taking all in-
dividuals of the chosen iterations together and only keeping non-dominated
ones. An evaluation of the validity of this aggregation can be found in Section
6.1. Figure 5.1 offers an example aggregation for the NSGA-II algorithm with
the fcumulative and fcost objectives. Within the rest of this Chapter and the
next graphs display aggregated runs (except where the aggregation method is
discussed explicitly).

(a) Individual fronts (b) Aggregated front

Figure 5.1.: Comparison of individual fronts to their aggregated counterpart.
The fronts on the left are the iterations for NSGA-II on the
medium graph with 23 samples. They use the cumulative infection
and cost objectives. The right plot shows the aggregated front ob-
tained by taking all individuals and only keeping non-dominated
ones.

To provide a basis for the discussion on merits of the different EMO algorithms
and the chosen objectives, see two more data sets: Figure 5.2 shows both
sampling rate comparisons for the algorithms, as well as all algorithms side
by side. In addition, Fig. 5.3 offers example results for the different possible
combinations of objectives.

47

5. Experiment Planning and Results

(a) Sampling comparison for NSGA-II (b) Sampling comparison for
NSGA-III

(c) Sampling comparison for
MOEA/D

(d) Comparison of 23-sampling for all
three algorithms

Figure 5.2.: Comparisons of NSGA-II, NSGA-III and MOEA/D algorithms.
All subplots show the cumulative infection and cost objectives on
the medium graph for low and high sampling rates. Note that due
to its much longer run-time, MOEA/D only ran for one iteration.

48

5.1. Stage 1 - Algorithm Selection

(a) Cumulative infections and cost (b) Infection peak and cost

(c) All three objectives

Figure 5.3.: Comparison between using cumulative infection, infection peak or
both in combination with cost as objectives. The subplots show
NSGA-III runs with high sampling on the medium graph.

49

5. Experiment Planning and Results

5.2. Stage 2 - Optimization Experiments on
Different Graph Sizes

First stage experiment results indicate NSGA-III being a good algorithm choice
for further exploration. It offers both a good Pareto front and adequate run-
time performance - with the caveat of having run too few iterations for statis-
tically solid results. Thus, we choose it as main algorithm for this stage. For
details see Section 6.1.

In the second stage we run the missing 7-sample fitness evaluation for the
medium graph. More importantly, this stage contains the full set of objectives
and sampling rates for both the small and large graphs from Table 4.1. In total
the experiment plan consist of 21 experiments, with the NSGA-III results from
the first stage completing the set.

Our main goal for this stage is finding interesting individuals (as defined in
the beginning of the Chapter) for the last experiment stage. During this stage
we aim to understand the impact graph size and objective choice have on
the optimization. Also, we investigate if the 7-sampling approach represents
a valid alternative to the high sampling variant for cutting down algorithm
run-time.

5.2.1. Results for Stage 2

We want to compare all tested sampling strategies in Section 6.2. For this Fig.
5.4 displays an example plot with all three sampling variants for fcumulative

and fcost objectives on the large graph. It shows a histogram for fcumulative

of one individual as a visual aid for consideration of sample rates. While this
histogram is helpful for deciding on the number of samples, its distribution
can vary depending on where an individual is in the search space.

Fig. 5.5 serves as comparison basis for the different graph sizes and objectives
is Section 6.2. Fitness values for each individual are normalized in relation to
the largest objective values for each graph size to make the data comparable.
This approach leads to three plots, one for each objective combination, which
contain the condensed results for all three graphs using the high sample rate.

Lastly, objective comparison and choosing individuals for the third stage profit
from looking at the individuals in both search and objective space. We show

50

5.2. Stage 2 - Optimization Experiments on Different Graph Sizes

(a) Comparison of sampling strategies (b) Histogram for cumulative infec-
tions

Figure 5.4.: Compare the different sampling strategies on the left. This uses
NSGA-III on the large graph and the cumulative infection and
cost objectives. A histogram for 199 runs of the simulation for in-
dividual (21, 474, 4) is shown on the right. It serves as a visual aid
for considering how many samples need to be taken for dependable
fitness values. Note that the median of the histogram data is at
8627.

a side-by-side view for both the cumulative infection and infection peak objec-
tive, using the large graph, in Fig. 5.6.

51

5. Experiment Planning and Results

(a) Cumulative infections and cost (b) Infection peak and cost

(c) All three objectives

Figure 5.5.: Comparison between the three graph sizes used for NSGA-III ex-
periments. Values are independently normalized by maximal ob-
jective values for each graph to make them easier to compare.
Note that the right shift on the smaller graphs is likely due to the
number of initial infections not scaling along with the graph.

52

5.2. Stage 2 - Optimization Experiments on Different Graph Sizes

(a) Objective space for cumulative in-
fection and cost objectives

(b) Search space for cumulative infec-
tion and cost objectives

(c) Objective space for infection peak
and cost objectives

(d) Search space for infection peak
and cost objectives

Figure 5.6.: Comparison between the search and objective space for both the
cumulative infections and infection peak combined with the cost
objective. The plots use the NSGA-III experiments on the large
graph as basis.

53

5. Experiment Planning and Results

5.3. Stage 3 - Infection Spread for Specific
Policy Sets

This Section aims to answer the core questions arising from both model def-
inition and previous experiment stages: Does the policy optimization return
sensible parameter sets? Exhibit different parts of the Pareto front show dis-
tinct behavior for epidemic spread? Is the model able to represent epidemic
spread in small communities accurately? Do results point toward deficiencies
of the model for our university scenario? Can we improve the model incremen-
tally to remove these deficiencies?

The simulation is run for the individuals chosen in Section 6.2 to answer these
questions. A list of the final individuals and their policy parameters can be
found in Table 5.2. For each individual we run the simulation 199 times1 on
the large graph. We enable advanced run-time logging as described in Section
4.4.

Table 5.2.: Individuals from the large graph experiments picked out for further
analysis. For an explanation of the choices see Section 6.2. A
description of the infection gap is in Section 6.1.

Individual klecture kfood ksport
No lockdown 101 500 40
Total lockdown 0 0 0
Least cumulative infections 5 1 5
Most cumulative infections 101 219 33
Left of gap 12 1 4
Right of gap 20 0 9
Only Lectures open 101 0 4
Low peak curve point 45 408 10
Mid peak curve point 61 284 14
High peak curve point 66 257 21
Highest peak 101 418 34
Close only lectures (Added after an ini-
tial sighting of data in Subsection 5.3.1)

0 500 40

1See also the probabilities in Table 6.3.

54

5.3. Stage 3 - Infection Spread for Specific Policy Sets

5.3.1. Results for Stage 3

Running the simulation for all individuals in Table 5.2 results in a lot of data.
This Subsection focuses on the data relevant to the evaluation in Section 6.3
by highlighting specific scenarios. Our first visualization of infection spread
displays curves with the number of infected over time. These plots show quar-
tile runs, picked using the height of the infection peak as measure. Fig. 5.7
shows a comparison of the upper extreme scenarios - no lockdown, the indi-
vidual with most cumulative infections and the one with the highest infection
peak. After that, Fig. 5.8 shows a similar comparison for the policy sets on
each side of the infection gap2.

We aggregate the data gathered on infected and susceptible at each location
to better understand epidemic spread across locations. In general, we sum up
the visitor amounts for all time-steps in one simulation run. Multiple runs are
then averaged. For a first overview, we group different location types together.
Fig. 5.9 shows infection curves and infected per location beside each other. It
compares the scenario without any lockdown to one without lectures. Then
we do a similar comparison in Fig. 5.10 for the individuals above and below
the infection gap. Lastly, Fig. 5.11 offers a histogram showing the internal
distribution of susceptible visitors for the different lectures.

Several entries from Table 5.2 and alternative aggregations are not shown in
this Subsection. First of all, infection curves in this Section display the total
infections - infected and exposed persons both. Graphs with only the currently
active infections are similar enough to need no showcase. However, be aware
of their infection peak being more rounded due to the stochastic model of
incubation time.

Beyond that, the scenario with only lectures open is less interesting than as-
sumed initially due to data shown in Fig. 5.9. The three points taken from
the Pareto front of the infection peak objective yield no new insights into the
model either. For actual policy makers These would be more interesting by
helping find points with similar infection numbers but lower costs. Lastly, we
do not aggregate cost data, since the dynamic cost factors described in Sub-
section 3.4.3 are set to zero for this thesis. This configuration leads to costs
being constant over time for each day of the week.

2Refer back to Fig. 5.5a for a visualization of this gap in the Pareto front.

55

5. Experiment Planning and Results

(a) No lockdown (klecture = 101,
kfood = 500, ksport = 40)

(b) Most cumulative infections
(klecture = 101, kfood = 219,
ksport = 33)

(c) Highest infection peak (klecture =

101, kfood = 418, ksport = 34)

Figure 5.7.: Compare the individuals with most total infections (infected and
exposed) for both infection objectives to an artificial policy with
no restrictions. The comparison shows the quartiles by infection
peak for 199 simulation runs on the large graph.

56

5.3. Stage 3 - Infection Spread for Specific Policy Sets

(a) Less infections/below gap
(klecture = 12, kfood = 1,
ksport = 4)

(b) More infections/above gap
(klecture = 20, kfood = 0,
ksport = 9)

Figure 5.8.: Compare the individuals directly above and below (meaning more
and less cumulative infections) the infection gap. For a definition
of the infection gap see Section 6.1. The comparison shows the
quartiles by infection peak for 199 simulation runs on the large
graph. Note that the scale for the y-axis differs between the plots.

57

5. Experiment Planning and Results

(a) Infection curves without lockdown
(klecture = 101, kfood = 500,
ksport = 40)

(b) Infected per location type without
lockdown

(c) Infection curves for no lectures
(klecture = 0, kfood = 500, ksport =
40)

(d) Infected per location type for no
lectures

Figure 5.9.: Compare total infection curves on the left with the amount of in-
fected individuals per location type on the right. The location data
is averaged over all individual simulation runs, with one σ error
range on the bars. Within one run, the values for all time-steps
are summed up. Note that infected people are only counted, if the
location they visited contained at least one susceptible individual.

58

5.3. Stage 3 - Infection Spread for Specific Policy Sets

(a) Susceptible per location type, be-
low gap (klecture = 12, kfood = 1,
ksport = 4)

(b) Susceptible per location type,
above gap (klecture = 20, kfood =

0, ksport = 9)

Figure 5.10.: Compare the amount of susceptible individuals per location type
for individuals above and below the infection gap (see Section
6.2). The location data is averaged over all individual simulation
runs, with one σ error range on the bars. Within one run, the
values for all time-steps are summed up. Note that susceptible
people are only counted, if the location they visited contained at
least one infected.

Figure 5.11.: Histogram of average susceptible individuals visiting lectures each
day. For each day the visits are summed up over all time-slots.
The data displayed here is gathered from 199 runs without lock-
down (klecture = 101, kfood = 500, ksport = 40) on the large graph.

59

6. Evaluation and Discussion

This Chapter refines and interprets the data gathered in the previous Chapter.
We separate it by experiment stage as well. Since we use them to decide on
further experiments, the conclusions reached in each Section of this Chapter
in turn influence the results of the next Section.1

Section 6.1 begins by discussing front aggregation from multiple runs of an
experiment. After that we do a preliminary comparison of low and high sam-
pling rates and the problems of low sample rates. Deciding on a primary
EMO algorithm rounds out the first Section. The second Section concludes
the sampling analysis. Then it discusses the different graphs and objectives.
Lastly, Section 6.3 investigates interesting individuals (as defined in Chapter
5) in depth. We conclude it with a discussion about the validity of our chosen
modeling approach.

6.1. Evaluation of Stage 1 - Aggregation,
Sampling and Algorithm Choice

As mentioned in Section 5.1 we run some experiments multiple times. Conse-
quently, we need a method to aggregate their results and describe it in Subsec-
tion 5.1.1. First consider our approach - only keeping non-dominated solutions
- under the assumption of perfect fitness values: Each individual is simulated
as many times as necessary to return the true median of its fitness distribu-
tion. In this case our aggregation method yields a front equal to or better
than its constituent iterations. The resulting front is less cluttered compared
to plotting individual iterations. Due to these advantages the aggregation is
closer to the real Pareto front and easier to interpret.

1This Chapter and the previous one are interleaved. For each Section, refer back to the
corresponding Section in Chapter 5 for details.

61

6. Evaluation and Discussion

Fig. 5.1 shows an example for the experiments run with 23 samples per fitness
evaluation. With the high-fidelity fitness values the plot resembles the ideal
scenario we described. Individual iterations in the plot look very similar, which
is true for the other algorithms and objective combinations as well. Addition-
ally, we compute hypervolumes for the different objectives (and NSGA-III).
They can be found in Table 6.1 and lead to the same conclusion: For our small
number of runs we find only small differences between iterations. Thus, we can
assume the aggregation offers a very slight advantage over the individual iter-
ations. Consequently, further evaluation takes advantage of this aggregation
method to reduce visual clutter.

Table 6.1.: Comparing hypervolumes of the aggregated front to the individual
iterations for NSGA-III and all objective combinations. Fitness val-
ues are normalized using values of 5000 for the infection objectives
and 25000 for the cost.

Objectives Iteration 1 Iteration 2 Iteration 3 Aggregated
fcumulative, fcost 0.245 0.242 0.242 0.247
fpeak, fcost 0.447 0.448 0.448 0.450

fcumulative, fpeak, fcost 0.199 0.216 0.201 0.218

Under less ideal conditions aggregation using the non-dominated set has a
disadvantage: With low-fidelity fitness values and few samples an individual
can get "lucky". A simple example: We take three fitness samples for an
individual. For all three the initial infected do not pass on the sickness (due to
chance). Thus, we assume the individual’s fitness to be very good. Using more
samples would instead have shown a higher infected count in the median.

In practice, this problem appears especially for individuals with less stringent
containment measures. Normally, those have less overall cost, but higher in-
fections as a trade-off. Due to the randomness inherent in the model, initial
infected can fail to infect anyone else as described in the previous paragraph. If
this happens, the relevant individual will have both low cost and low infections.

We see this effect clearly in Fig. 5.2. It show an infection gap regardless of the
algorithm used, which is more pronounced for the low sample rate. In theory
several phenomena can cause such a gap:

• Low sample rates lead to "lucky" individuals as mentioned before. We
see this effect in the difference the sample rate makes in Fig. 5.2.

62

6.1. Evaluation of Stage 1 - Aggregation, Sampling and Algorithm Choice

• The EMO algorithm might not explore the space of the infection gap
due to a suboptimal diversity mechanic.

• A full lockdown limits infection spread to the living arrangements of the
initial infected. Once the epidemic first spreads beyond that, total infec-
tions make a jump upwards. Thus, the modeling of interactions between
people and infection mechanics form a minimal (natural) infection gap.

The last point is important, because individuals at the edges of this natural
gap are interesting to explore in more depth. Because of that the infection gap
is relevant at the end of Section 6.2 when we pick out individuals for further
analysis. We need to investigate sampling rates as a result of the first point
mentioned above. Section 6.2 deals with the topic, because the additional
7-sample evaluation offers more data for interpretation.

For the moment we consider the low sample rate a negative example. It high-
lights the inherent difficulties of fitness evaluation. The similarities between
algorithms (Fig. 5.2) and experiment iterations (Fig. 5.1) for the high sample
rate imply a much higher fidelity for 23 samples. Furthermore, Fig. 5.3 shows
a more pronounced gap for the fcumulative objective compared to fpeak.

Thus, we need to choose an algorithm that minimizes the impact of point
two above. As a baseline we compare NSGA-III and MOEA/D to NSGA-II.
The former algorithms both use reference directions of some kind to improve
diversity, which should help with closing the gap. Since the infection gap is
most pronounced for the fcumulative objective, we choose is as the basis for
comparison. Fig. 5.2 shows a similar performance for the aggregated fronts of
all three algorithms.

Table 6.2.: Comparing hypervolumes of the different EMO algorithms for dif-
ferent objectives. Fitness values are normalized using values of
5000 for the infection objectives and 25000 for the cost. Note that
MOEA/D has no aggregated front due to there being only one it-
eration.

Objectives NSGA-II NSGA-III MOEA/D
fcumulative, fcost 0.248 0.247 0.243
fpeak, fcost 0.450 0.450 0.447

fcumulative, fpeak, fcost 0.207 0.218 0.194

63

6. Evaluation and Discussion

Table 6.2 shows the hypervolumes for the comparison to further back this
observation up. Again all three algorithms show similar results. MOEA/D
having slightly smaller hypervolumes across the board can be explained with
there being only one iteration for the algorithm. Consequently, algorithm
performance was not improved via non-dominated aggregation.

Much more important is the MOEA/D run-time of over 17 days: Table 5.1
shows the algorithm taking a lot longer for each experiment. Likely, its manu-
ally parallelized implementation is not as efficient as the others. For this reason
we do not consider MOEA/D for further experiments in the second stage.

The choice between NSGA-II and NSGA-III proves more difficult. Both show
similar run-times and hypervolumes. While the infection gap for NSGA-III in
Fig. 5.2 looks smaller, three iterations are not enough to make that observation
with statistical significance. Thus, we face a trade-off between NSGA-II being
slightly faster - again with too few data points for significance - and NSGA-III
providing a potentially smaller gap via reference directions.

Our final choice for the experiments in Section 5.2 falls to NSGA-III. We
prefer it for two reasons: The difference in run-time is small enough to not
matter for the number of experiments run. Furthermore, the large graph from
the next stage showed a more pronounced gap during development. This fact
makes NSGA-III’s reference directions more attractive.

6.2. Experiments Stage 2 - Evaluation of
Optimization and Finding Interesting
Individuals

The data resulting from the second round of experiments can be found in
Section 5.2.1. We need to conclude the sampling discussion started in the
previous Section before talking about the differences between the different
graphs and objectives. Relevant to this is Fig. 5.4. It shows a comparison
between the different sampling rates for the fcumulative and fcost objectives on
the large graph. This comparison show 7-sampling between the low and high
sample rates quality wise.

According to this data (Fig. 5.4) both low and medium sample rates do not
produce adequate fitness values. Far more importantly: Can we trust the re-

64

6.2. Experiments Stage 2 - Evaluation of Optimization and Finding Interesting Individuals

sults from the high sample rate. To answer this Subfig. 5.4b shows an example
histogram for one individual’s cumulative infection fitness. Individuals at the
infection gap might have a different, bi-modal distribution for their fitness val-
ues. Such distributions do not invalidate our considerations, but would make
them more complicated mathematically.

We already laid out the worst case for an optimization experiment in Section
6.1: More that half of an individual’s fitness samples have values a lot lower
than the true median. We can approximate the likelihood for this via treating
the histogram data as a normal distribution. Table 6.3 lists the probabilities of
more than half of the fitness samples being 1σ or 2σ below the average (which
is close enough to the median for our use-case).

Table 6.3.: This Table lists the chance of an individual’s fitness being signif-
icantly different from the median of the underlying distribution
depending on the sampling rate. The data of the histogram in Fig.
5.4 forms the basis for this calculation. Its average value is 8 627.2

and σ = 17.95.
1-sampling 7-sampling 23-sampling 199-sampling

Outside 1σ 15.87% 6.34 ∗ 10−4% 2.54 ∗ 10−10% 1.11 ∗ 10−80%

Outside 2σ 2.28% 2.68 ∗ 10−7% 1.92 ∗ 10−20% 4.99 ∗ 10−165%

One optimization experiment has 104 fitness evaluations. The Table shows
clearly that we can expect such divergent individuals for 1-sampling (104 sam-
ples) and 7-sampling (7∗104 samples). At the same time, the expected number
of individuals with anomalous fitness (1σ) for the high sample (23∗104 samples)
rate is only 2.54∗10−6. Thus, fitness values for 23 samples are trustworthy and
our experiment results not invalid on these grounds. Since individual simula-
tions in the third stage, Section 6.3, run 199 times we added the last column
of Table 6.3 .

After making sure the sample rate used is high enough, we consider the different
graph sizes. For this Fig. 5.5 contains normalized and condensed data for all
graphs and objectives. The first difference we notice is a right shift for both
fpeak and fcumulative on the smaller graphs. This effect occurs purely due to
value normalization. Because the number of initial infections does not scale
along with the graph, the minimal number of infected is relatively larger on
the small graph. For reasons to avoid downscaling of initial infections, see the
end of Subsection 2.1.3.

65

6. Evaluation and Discussion

In the same vein, the (leftmost) infection gap for the fcumulative objective scales
slightly with graph size. There is a second gap in the front, separating policy
sets with about half the people infected from those with almost total epidemic
spread. Furthermore, the fpeak objective shows more structure on the larger
graphs. A clear curve around 0.75 for the normalized fpeak marks these indi-
viduals as interesting for further study.

In summary graph scaling accomplishes its purpose: The small graphs are
similar enough to the full version for efficient development and early testing.
On the other hand, the large graph offers more structures within and therefore
a more interesting Pareto front for in-depth work.

Next, we compare the possible objective combinations. We highlighted some
differences between the fcumulative and fpeak objectives during graph compari-
son. So far, we did not consider optimization using all three objectives. Look-
ing back to Fig. 5.5, the three objective experiments seem suspiciously similar
to the other combinations. Arguably, we can remove either infection objective
and get the plot with the other in return. Thus, we investigate a possible
correlation between fcumulative and fpeak. As a first step, Fig. 6.1 offers a plot
containing fcumulative and fpeak plotted against each other.

Figure 6.1.: Scatterplot that plots the infection peak and cumulative infections
objectives against each other. The data is from the large graph and
using all three objectives, then stripping out the cost objective.

The Figure implies a relationship between the objectives, though not a linear
one. For this reason we calculate Spearman’s [22] correlation for the data set.
As a rank-based correlation method it does not require objective values to be

66

6.2. Experiments Stage 2 - Evaluation of Optimization and Finding Interesting Individuals

distributed in any specific way2. Furthermore, Spearman’s correlation tries to
find monotonous relationships between variables. Such a relationship between
the objectives seems reasonable when looking at Fig. 6.1. An overview of the
resulting correlation values between objectives can be found in Table 6.4.

Table 6.4.: Spearman correlation matrix [22] for all three objectives. Data is
from the large graph and aggregated experiment runs with all three
objectives.

fcumulative fpeak fcost
fcumulative 1 0.971 -0.981
fpeak 0.971 1 -0.997
fcost -0.981 -0.997 1

The Table is based on a small number of experiments and thus the results
not really statistically significant. Still, we can conclude that - for our specific
model and the experiments run - a monotonous relationship between the in-
fection objectives exists. Thus, using all three objectives at the same time is
unlikely to yield gains.

On the other hand, Table 6.4 shows either infection objective to be in conflict
with fcost. Due to this, the resulting two-objective problems actually produce
interesting Pareto fronts. We can pick the infection objective that fits our
current goals better.

A further comparison of fcumulative and fpeak in Fig. 5.6 shows search and ob-
jective space beside each other. Together with Fig. 5.5 both objectives display
advantages and disadvantages. For the fcumulative objective infection gaps are
more pronounced. At the same time, the search focuses more strongly on a
part of the search space where eating in the cafeteria is locked down strongly.
This implies a stronger impact of the cafeteria policy on the total infections.3

The infection peak objective on the other hand explores the search space more
uniformly. It offers a front in objective space with a more interesting shape
including knee points.

To conclude this stage’s evaluation, only choosing individuals (from Fig. 5.5)
to evaluate in the next stage remains. Setting all policy values to their mini-

2Note that the fcumulative objective is not normally distributed, making Pearson’s [22]
correlation useless.

3In contrast to Section 6.3, where we find cafeteria visits to account for few meetings
between infected and susceptible people.

67

6. Evaluation and Discussion

mum and maximum is the baseline. We compare these parameter sets to the
individuals with highest and lowest fcumulative found by the optimization. Fur-
thermore, we want to investigate the infection gap (see Section 6.1) and choose
individuals on both sides of it for the same objective. Since optimization of the
fcumulative objective (in Fig. 5.6) focuses on keeping lectures open and shutting
everything else down, we pick an individual from this corner. Points from the
curves of the fpeak objective as well as the highest peak individual are chosen
to round the set of investigated individuals out .

6.3. Experiments Stage 3 - Evaluation of the
Location-Based Model

This Section starts with the first question formulated in Section 5.3: Are the
policies found by the optimization in the second stage of experiments valid
and diverse? For this see Fig. 5.7. It compares the upper extremes (in terms
of infected) found by each infection objective to an artificial scenario without
lockdown. As the plots clearly show, these are basically identical. Data on the
other side of the objective space looks the same, though we omit a plot of it.

Thus, the EMO search finds the edges of the Pareto front we expect. Looking
back to the fronts in Fig. 5.5, diversity between these points is decent on
first glance. This further underlines the conclusion of Section 6.2: Using EMO
approaches to find policy parameters to contain epidemic spread in our model
works and returns useful data.

At the same time the overall question of model validity remains. One example
of this is the infection gap we first discuss in Section 6.1. We argue that
for a high enough sampling rate this gap is an inherent part of the epidemic
model and not a deficit of the search approach. Section 6.2 further backs this
up with the analysis that our sample rate for an individual’s fitness is high
enough. With the data from experiment stage three, we can confirm this gap
as a result of the model.

Fig. 5.8 shows a clear difference between policy parameter sets above and
below the infection gap. Note that in contrast to the infection curves we
discussed so far, the policy parameters below the gap (Subfig. 5.8a) exhibit a
less pronounced peak. Here the epidemic tapers off, because only the flatmates
of the initial infected contract the disease. In a more typical scenario (Fig.

68

6.3. Experiments Stage 3 - Evaluation of the Location-Based Model

5.8b) a wave of new infections leads to a much higher and clearer peak. A
representation of this mapped to locations is in Fig. 5.10: Below the gap flats
dominate for susceptible meeting an infected person. Above that lectures lead
to more meetings, kicking of more infections. The epidemic turns out longer
and has much more overall infected.

From the data on the infection gap, we conclude that the structure of the
modeled graph has a large impact on the front. Different graph structures lead
to break points, where the epidemic behavior changes suddenly [38]. Through
looking for such breakpoints in optimization we can gain knowledge about the
model. Another example of an interesting region is the points we pick out from
the infection peak front in Section 5.3.

Overall, the resulting infection curves (see Subsection 5.3.1) are similar to those
of classical epidemiological models [38, 27]4. We can explain divergences like
infections not propagating beyond initial infected with full lockdown within the
model. Thus, we conclude that the location-based modeling approach used in
this thesis is suited to model epidemic spread.

For a location-based model the next question is, if we can identify specific
locations central to epidemic spread. In real-world epidemic events the concept
of superspreaders matters - individuals that infect a lot of others on their
own [49, 38]. How do we stop such superspreaders? If we want to take real-
world action depending on predictions about individual people, we face serious
ethical questions [52, 68]. We consider superspreading locations a safer topic:
Aside from highly infectious individuals [49, 38], epidemic spread at a location
depends on total visitors and population density [87]. Our model represents
the later via specific infection rates. A more precise modeling could for example
treat this infection rate as a function of visitor numbers.

Actually finding superspreading locations is possible via evaluating the number
of infected visiting each type of location on average. An example of this can
be seen in Fig. 5.9. Susceptible individuals visiting each location type exhibit
a very similar distribution. According to the plot lectures dominate epidemic
spread by a wide margin. Lectures accounting for most new infections coincides
with our assumptions for the university scenario. However, we find the stark
difference to the remaining location types concerning. Subfig. 5.9d on the other
hand shows the distribution without lectures. While it shows more reasonable

4Most papers will plot "active" infections. See the end of Subsection 5.3.1.

69

6. Evaluation and Discussion

ratios for the different locations, the total infections are much lower. Thus,
without lectures infection is limited to certain clusters (sport courses) of people.
Overall, the question arises, whether we face a discrepancy in our modeling of
the university scenario.5

Two main error sources can be responsible for this effect: Either a part of the
model is wrong or modeled with insufficient detail (or not at all). Despite
the simpler structures of small communities (refer back to Chapter 1), the
later error is still relevant for them. University is no closed system (unlike
an island community). It consists of far more moving parts than our simple
rules in Section 4.1 suggest. In this light, we can bring the meetings with
infected over location types in line with our assumptions if we extend the
modeling. Flats adequately model students’ living arrangements, but do not
include other activities in their social circle (parties, study groups, ...). Sport
courses similarly account for only a small fraction of the hobbies a university
student might pursue.

For locations the distribution of susceptible individuals that meet an infected
person is reasonable: Fig. 5.11 shows a relatively uniform distribution, which
tapers off towards large lectures. This Figure shows no specific superspreading
locations - as expected, since we model neither really large lectures (>> 100

attendees), nor large scale events like parties. Lectures dominate infections by
sheer number of overall meetings between students. Comparison with our basic
assumptions (as detailed the paragraph before last) makes a fault in lecture
modeling unlikely.

On the other hand, we consider the number people - regardless of infected or
susceptible - in the cafeteria locations too low. In order to make an informed
evaluation of our modeling, we take a short look at real-world studies on infec-
tions at restaurants and cafeterias: Zuber et al. (2020) [87] find a correlation
between eating out and contracting SARS-CoV-2 that is even higher than for
public transport. Aerosols serve as the main infection vector for restaurants,
instead of close contact [83].

Cafeterias in our university example are situated in larger spaces than the
average lecture. Additionally, students sometimes eat outside if the weather
is good. Because of this we set the infection rate for eating lower that for

5To be clear: We refer to a discrepancy between the model and our assumptions. A
comparison between model and real university is difficult due to a lack of empiric data.

70

6.4. Summary of the Evaluation

lectures (Appendix A). The driving force behind infections via cafeterias is
thus the number of visitors. At the least we would expect more meetings
between infected and susceptible people than in sport courses.

As a more faithful modeling we suggest two improvements compared to the
current model: Cafeteria attendance focuses on midday instead of a completely
uniform distribution across opening hours. At the same time both lecturers and
students often go eating in small groups, which our model does not represent.
Lastly, current generation rules create too few visits overall. These suggestions
taken together would further help us to avoid lectures being the only vector
for epidemic spread throughout the modeled population.

Such a modeling flaw degrades our model’s direct usability for deriving real
world conclusions and containment measures. However, this problem high-
lights an advantage of the location-based modeling approach: Since we gener-
ate the graph from simple, scenario-specific rules we can improve it incremen-
tally. Using different objectives in policy optimization helps this workflow of
building a preliminary model and then improving it. For example, the fpeak
objective finds results more evenly distributed in the search space. This ob-
servation hints at the objective being more sensitive to non-lecture locations
than fcumulative.

6.4. Summary of the Evaluation

The previous Section shows that our location-based approach to modeling epi-
demic spread is feasible. We will highlight similarities and differences with two
similar relevant papers during this summary. These comparisons are meant to
help readers place our approach among classical epidemic models. First is "Op-
timal Control Policies to Address the Pandemic Health-Economy Dilemma" by
Salgotra et al. (2021) [64]. They focus on the trade-off between containing epi-
demic spread and its cost in a modified SEIR model, using EMO to find optimal
policies as well. Next, "A social network model of COVID-19" by Karaivanov
(2020) [38] describes a (peer-to-peer) graph version of the SIR model. Notably,
Karaivanov uses the same number of people in his model as in our large graph
(Table 4.1) and a lot of our model parameters (Appendix A) are derived from
his paper.

Aside from its general feasibility we claim that the location-based approach is
an intuitive modeling for certain scenarios, namely small communities. Com-

71

6. Evaluation and Discussion

parisons with other approaches back this up: Karaivanov [38] uses a variant of
scale-free network [82]. This approach is a simplification relative to real-world
intricacies [20] and more importantly not easily tailored to specific scenarios.
On the other hand, the model of Salgotra et al. [64] misrepresents populations
with a lot of structure through the perfect mixing assumption of its SIR model
derivative [38]. Our own model works according to simple rules of people vis-
iting locations. For small communities we can often derive such rules (see
Section 4.1) easily.

In Section 6.3 we noticed epidemic break points, where the spread changes dras-
tically due to the graph structure (Figs. 5.8 and 5.9). According to Karaivanov
[38] peer-to-peer contact graphs exhibit similar behavior. He highlights the
graph structures responsible as good targets for precise lockdowns and links
them to the concept of superspreaders [49]. We see practical and ethical con-
cerns with containing and especially predicting superspreading individuals (see
Section 6.3). Instead our model uses the concept of superspreading locations.
Due to data we gather about locations at run-time, we can find and reason
about locations that form hot-spots for epidemic spread. These considerations
are made easier by the location model because we can tailor it more precisely
to a scenario. Thus, we can bring more domain knowledge to bear than in a
more generic model.

Another advantage of our location-based model is adaptability. We can im-
prove and extend it incrementally until a sufficient level of detail is reached.
The university scenario we model in this thesis (as discussed in Section 6.3) is
a good example for this: First we look at the data gathered during simulation
runs to understand how our model behaves for the scenario. We notice that
lectures account for a majority of meetings between infected and susceptible
individuals. This observation is in line with our assumptions. However, cafete-
ria visits account for too few meetings between people and consequently have
to little impact on epidemic spread. Once we identify this mismatch between
the model and our assumptions, we suggest changes to the generation rules
(Section 6.3).

Furthermore, we conclude that using EMO to optimize policy parameters
works. Salgotra et al. [64] arrive at similar conclusions. In their evalua-
tion of different EMO algorithms they find NSGA-II and NSGA-III to work
well for their problems, while MOEA/D performs worse. Our analysis in Sec-
tion 6.1 matches this, backing our choice of NSGA-III for further experiments

72

6.4. Summary of the Evaluation

in Section 5.2. Additionally, Section 6.2 shows that we must take care when
determining the fitness of a set of policy parameters in our model. We need
to generate enough fitness samples to get an accurate value, since individual
simulation runs yield different fitness values.

The choice of optimization goals matters as well. Coupling either fpeak or
fcumulative with the fcost objective creates different fronts with their own focus
areas. In Section 6.2 we show that using all three objectives together brings
no direct benefits. All Pareto fronts found by our optimization (see Fig. 5.5)
show structure (infection gap, knee points) and are no simple anti-proportional
relations. Optimization results for fpeak and fcost show visually similar fronts
to the results of Salgotra et al. [64]. Knee points found in their experiments
are more defined. Possible reasons for this are a differing definition of the
cost objective or a different speed of epidemic spread between graph and SIR
models [38]. We also reproduce the clear conflict of reducing infections versus
minimizing costs Salgotra et al. [64] mention. Overall, we consider optimiza-
tion via EMO a valid approach to both find interesting policy parameters and
guide further model design.

So far our university scenario model is too simplistic to help decision makers
in the real world. What steps are necessary to improve the model to this
point? Firstly, we need to revise graph generation rules (see Section 6.3) to
be more in line with our assumptions regarding our university scenario. The
dynamic part of the cost model introduced in Section 3.4 requires exploration.
We can refine location dependent infection rates using empiric data or even
define them dynamically depending on visitor numbers. Real policies change
over time and are often much more complex than our three policy parameters
[38, 64, 86]. Chapter 7 ends with some ideas on how we could model dynamic
location-based policies.

Beyond that, our university model needs to be evaluated on more and different
graphs. We need to review EMO algorithms more in depth than in Section 6.1
to find the best one for optimizing policy parameters. Potential other objec-
tives like time of infection peak are worth exploration. Lastly, we recommend
modeling another small community to see how well the conclusions reached in
this thesis transfer to new scenarios.

73

7. Conclusion and Future Work

This thesis describes a location-based approach to epidemic modeling for small
communities. Small "communities" like islands, schools, hospitals or similar
fill a gap between clinical trials finding the characteristics of a virus and large
scale models simulating epidemic spread for entire societies. Such a community
offers richer interaction structures and potentially different emergent behavior
from society at large. As an example, we model a university scenario in this
thesis and optimize policy parameters using EMO.

After considering related work (Chapter 2) we decide on building a location-
based graph model. Chapter 3 describes the theory behind it - people visiting
locations at different times represented via a bipartite graph. We define the
goals of low infection peaks (fpeak), few cumulative infections (fcumulative) and
minimal cost of containment measures (fcost). With different EMO algorithms
we optimize three policy parameters for our scenario: The maximal allowed
lecture size, people allowed into cafeterias and sport course size. Implemen-
tation details (Chapter 4) are followed by a description of our experiments in
Chapter 5.

Our evaluation starts with choosing NSGA-III as primary EMO algorithm
(Section 6.1) after initial experiments. We continue with experiments on dif-
ferent graph sizes and with different objective combinations. 23 simulation
runs prove a good choice for deciding the fitness of a parameter set (Section
6.2), with lower sample rates showing much worse results. Lastly, we look at
specific individuals in details to better understand the proposed model (Section
6.3).

In Section 6.4 we conclude that both the location-based model and policy op-
timization using EMO are viable and intuitive ways to build and understand
an epidemiological model for small communities. Furthermore, we highlight
the advantages of our model: Graph generation from simple rules, adapt-
ability and through that incremental improvement of the model. Where our

75

7. Conclusion and Future Work

university model diverges from our assumptions we are able to make clear rec-
ommendations for better generation rules (Section 6.3). Policy optimization
complements model analysis by finding interesting sets of policy parameters
on the structure-rich Pareto front created from the conflict between keeping
infections low and minimizing costs. Regarding optimization goals we find
both fcumulative and fpeak objectives offering different advantages when paired
with fcost. However, using all three objectives at the same time yields no real
benefit (Section 6.2).

Aside from exploring the existing university model further as described in Sec-
tion 6.4 there is a plethora of possible extensions: Testing of infected without
symptoms; vaccinations; modeling risk groups with a higher chance of dying
to infection; diversification of symptom modeling beyond "yes" and "no". Re-
garding policy optimization we can introduce more parameters to represent
more complex policies. Beyond that, a policy could actually decide dynami-
cally on lockdowns for each location and time-step. One example of a possible
approach to dynamic policies is training a decision tree using EMO [37, 10].
Lastly, we can easily integrate the location-based approach into other epidemi-
ological models by generating a classical contact graph from the location-based
representation.

76

Bibliography

[1] Adeshina Adekunle, Michael Meehan, Diana Rojas-Alvarez, James
Trauer, and Emma McBryde. Delaying the COVID-19 epidemic in Aus-
tralia: evaluating the effectiveness of international travel bans. Australian
and New Zealand Journal of Public Health, 44(4):257–259, aug 2020.

[2] Jorge Andrés Sánchez-Duque, Juan Pablo Orozco-Hernández, Daniel
Stiven, Marín Medina, and Alfonso J Rodriguez-Morales. Economy or
Health, Constant Dilemma in Times of Pandemic: The Case of Coron-
avirus Disease 2019 (COVID-19). researchgate.net, 14(1):717–720, 2020.

[3] Nino Antulov-Fantulin, Alen Lančić, Hrvoje Štefančić, and Mile Šikić.
FastSIR algorithm: A fast algorithm for the simulation of the epidemic
spread in large networks by using the susceptible-infected-recovered com-
partment model. Information Sciences, 239:226–240, 2013.

[4] N Arshed, MS Meo, and F Farooq. Empirical assessment of government
policies and flattening of the COVID19 curve. researchgate.net, 20(4), nov
2020.

[5] D Bacciua, A Michelia, M Poddaa Stat, and undefined 2020. Edge-based
sequential graph generation with recurrent neural networks. research-
gate.net, 2020.

[6] Benjamin Bach, Andre Spritzer, Evelyne Lutton, and Jean Daniel Fekete.
Interactive random graph generation with evolutionary algorithms. In
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 7704
LNCS, pages 541–552. Springer, Berlin, Heidelberg, 2013.

[7] NTJ Bailey. The mathematical theory of infectious diseases and its appli-
cations. 1975.

[8] Steven C. Bankes. Agent-based modeling: A revolution?, may 2002.

77

Bibliography

[9] A. Barrat and M. Weigt. On the properties of small-world network models.
European Physical Journal B, 13(3):547–560, feb 2000.

[10] Rodrigo C Barros, Márcio P Basgalupp, André C P L F de Carvalho, and
Alex A Freitas. A Survey of Evolutionary Algorithms for Decision Tree
Induction. Technical report.

[11] Cristiane M. Batistela, Diego P.F. Correa, Átila M. Bueno, and José
Roberto C. Piqueira. SIRSi compartmental model for COVID-19 pan-
demic with immunity loss. Chaos, Solitons and Fractals, 142:110388, jan
2021.

[12] Antonio Benítez-Hidalgo, Antonio J. Nebro, José García-Nieto, Izaskun
Oregi, and Javier Del Ser. jMetalPy: A Python framework for multi-
objective optimization with metaheuristics. Swarm and Evolutionary
Computation, 51:100598, dec 2019.

[13] Ottar N. Bjørnstad, Katriona Shea, Martin Krzywinski, and Naomi Alt-
man. The SEIRS model for infectious disease dynamics. Nature methods,
17(6):557–558, jun 2020.

[14] Julian Blank and Kalyanmoy Deb. pymoo: Multi-objective Optimization
in Python. IEEE Access, 8:89497–89509, jan 2020.

[15] Per Block, Marion Hoffman, Isabel J. Raabe, Jennifer Beam Dowd,
Charles Rahal, Ridhi Kashyap, and Melinda C. Mills. Social network-
based distancing strategies to flatten the COVID-19 curve in a post-
lockdown world. Nature Human Behaviour, 4(6):588–596, 2020.

[16] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald.
Finding knees in multi-objective optimization. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3242:722–731, 2004.

[17] JC Butcher. A history of Runge-Kutta methods. math.uoc.gr, 20:247–260,
1996.

[18] David Camacho, Ángel Panizo-LLedot, Gema Bello-Orgaz, Antonio
Gonzalez-Pardo, and Erik Cambria. The four dimensions of social network
analysis: An overview of research methods, applications, and software
tools. Information Fusion, 63(1):88–120, 2020.

78

Bibliography

[19] Saptarshi Chatterjee, Apurba Sarkar, Swarnajit Chatterjee, Mintu Kar-
makar, and Raja Paul. Studying the progress of COVID-19 outbreak in
India using SIRD model. Indian Journal of Physics 2020, pages 1–17, jun
2020.

[20] Ning Ning Chung and Lock Yue Chew. Modelling Singapore COVID-19
pandemic with a SEIR multiplex network model, jun 2020.

[21] Daniel Cordeiro, Grégory Mounié, Swann Pérarnau, Denis Trystram,
Jean-Marc Vincent, and Frédéric Wagner. Random graph generation for
scheduling simulations. page 10, mar 2010.

[22] Joost C.F. de Winter, Samuel D. Gosling, and Jeff Potter. Comparing
the pearson and spearman correlation coefficients across distributions and
sample sizes: A tutorial using simulations and empirical data. Psycholog-
ical Methods, 21(3):273–290, sep 2016.

[23] K Deb, A Pratap, S Agarwal, T Meyarivan IEEE TRANSACTIONS ON,
and Undefined 2002. NSGA-II. cse.unr.edu, 6(2), 2002.

[24] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sorting
approach, Part I: Solving problems with box constraints. IEEE Transac-
tions on Evolutionary Computation, 18(4):577–601, 2014.

[25] Jonas Dehning, Johannes Zierenberg, F. Paul Spitzner, Michael Wibral,
Joao Pinheiro Neto, Michael Wilczek, and Viola Priesemann. Inferring
change points in the spread of COVID-19 reveals the effectiveness of in-
terventions. Science, 369(6500), jul 2020.

[26] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An alge-
braic approach. pages 167–180, jul 2008.

[27] Jesús Fernández-Villaverde and Charles I. Jones. Estimating and Simulat-
ing a SIRD Model of COVID-19 for Many Countries, States, and Cities.
may 2020.

[28] Aidan Findlater and Isaac I. Bogoch. Human Mobility and the Global
Spread of Infectious Diseases: A Focus on Air Travel. Trends in Para-
sitology, 34(9):772–783, sep 2018.

[29] Antonio Gaspar-Cunha, Jose Covas, A Gaspar-Cunha, and J A Co-
vas. A Real-World Test Problem for EMO Algorithms. researchgate.net,
2632:752–766, 2003.

79

Bibliography

[30] Maira Gatti de Bayser, Paulo Rodrigo Cavalin, Claudio Pinhanez, Cicero
Nogueira Dos Santos, Maíra Gatti, Ana Paula Appel, Cícero dos San-
tos, Daniel Gribel, Paulo Cavalin, and Samuel Barbosa Neto. Large-Scale
Multi-agent-Based Modeling and Simulation of Microblogging-Based On-
line Social Network Classification of Life Events on Social Media View
project Life Events Analytics View project Large-Scale Multi-Agent-based
Modeling and Simulation of Micro. researchgate.net, 8235 LNAI:17–33,
2014.

[31] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical re-
actions. In Journal of Physical Chemistry, volume 81, pages 2340–2361,
1977.

[32] Philip T. Gressman and Jennifer R. Peck. Simulating COVID-19 in a
university environment. Mathematical Biosciences, 328:108436, oct 2020.

[33] Christian Horoba and Frank Neumann. Benefits and drawbacks for the use
of ε-dominance in evolutionary multi-objective optimization. GECCO’08:
Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation 2008, pages 641–648, 2008.

[34] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, and A. M. Ramos. Mathemat-
ical modeling of the spread of the coronavirus disease 2019 (COVID-19)
taking into account the undetected infections. The case of China. Com-
munications in Nonlinear Science and Numerical Simulation, 88:105303,
sep 2020.

[35] Parnian Jabbari and Nima Rezaei. With Risk of Reinfection, Is COVID-19
Here to Stay?, aug 2020.

[36] Himanshu Jain and Kalyanmoy Deb. An evolutionary many-objective
optimization algorithm using reference-point based nondominated sorting
approach, Part II: Handling constraints and extending to an adaptive
approach. IEEE Transactions on Evolutionary Computation, 18(4):602–
622, 2014.

[37] Dariusz Jankowski and Konrad Jackowski. Evolutionary algorithm for
decision tree induction. In Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 8838, pages 23–32. Springer Verlag, 2014.

[38] Alexander Karaivanov. A social network model of COVID-19. PLoS ONE,
15(10 October):e0240878, oct 2020.

80

Bibliography

[39] Hamdi Kavak, Dieter Pfoser, Joon Seok Kim, Carola Wenk, Andrew
Crooks, and Andreas Züfle. Location-based social simulation. In ACM In-
ternational Conference Proceeding Series, pages 218–221, New York, NY,
USA, aug 2019. Association for Computing Machinery.

[40] W 0 Kermack and A G Mckendrick. A contribution to the mathemat-
ical theory of epidemics. Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character,
115(772):700–721, aug 1927.

[41] Kyung Hyun Kim, Eun Hwa Choi, and Seung Ki Kim. Editorial. COVID-
19 outbreak and its countermeasures in the Republic of Korea. Journal
of Neurosurgery, 133(1):29–30, apr 2020.

[42] Mikko Kivelä, Marc Barthelemy, James P Gleeson, Yamir Moreno, and
Mason A Porter. Multilayer Networks. Technical report, 2014.

[43] A. A. Kochkarov, R. A. Kochkarov, and G. G. Malinetskii. Issues of
dynamic graph theory. Computational Mathematics and Mathematical
Physics, 55(9):1590–1596, 2015.

[44] R Kruse, C Borgelt, C Braune, and S Mostaghim. Computational intelli-
gence.

[45] Luis F Lafuerza and Marian Bogu. Simulating non-Markovian stochastic
processes. 042108:1–9, 2014.

[46] S Lasaulce, C Zhang, V Varma Frontiers in Public . . . , and undefined
2021. Analysis of the tradeoff between health and economic impacts of
the Covid-19 epidemic. ncbi.nlm.nih.gov.

[47] Dion T.S. Li, Lakshman Perera Samaranayake, Yiu Yan Leung, and
Prasanna Neelakantan. Facial protection in the era of COVID-19: A
narrative review. Oral Diseases, 27(S3):665–673, apr 2021.

[48] C M Macal and M J North. Tutorial on agent-based modelling and sim-
ulation. Journal of Simulation, 4(3):151–162, 2010.

[49] Dasha Majra, Jayme Benson, Jennifer Pitts, and Justin Stebbing. SARS-
CoV-2 (COVID-19) superspreader events, 2021.

[50] Andrea Mambrini and Dario Izzo. PaDe: A parallel algorithm based on
the MOEA/D framework and the island model. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 8672:711–720, 2014.

81

Bibliography

[51] D Caccavo MedRxiv and undefined 2020. Chinese and Italian COVID-
19 outbreaks can be correctly described by a modified SIRD model.
medrxiv.org.

[52] Richard Murphy and Gill Wyness. Minority report: the impact of
predicted grades on university admissions of disadvantaged groups.
https://doi.org/10.1080/09645292.2020.1761945, 28(4):333–350, jul 2020.

[53] Murooj Nadhom and Pavel Loskot. Survey of public data sources on the
Internet usage and other Internet statistics. Data in Brief, 18:1914–1929,
jun 2018.

[54] Antonio Jesús Nebro, Juan José Durillo, Antonio J Nebro, and Juan J
Durillo. A study of the parallelization of the multi-objective metaheuristic
MOEA/D. Springer, 6073 LNCS:303–317, 2010.

[55] M E J Newman and Juyong Park. Why social networks are different from
other types of networks. Technical report, 2003.

[56] John Norrie. Some challenges of sparse data necessitating strong assump-
tions in investigating early COVID-19 disease, 2020.

[57] Pandemic Plan. Pandemic Plan of Otto von Guericke University Magde-
burg (OVGU). page 19, 2020.

[58] Hazhir Rahmandad and John Sterman. Heterogeneity and network struc-
ture in the dynamics of diffusion: Comparing agent-based and differential
equation models. Management Science, 54(5):998–1014, 2008.

[59] FM De Rainville, FA Fortin, MA Gardner, and M Parizeau. DEAP: A
Python Framework for Evolutionary Algorithms. GECCO’12 - Proceed-
ings of the 14th International Conference on Genetic and Evolutionary
Computation Companion, pages 85–92, 2012.

[60] Jeff Reback, Wes McKinney, Jbrockmendel, Joris Van den Bossche, Tom
Augspurger, Phillip Cloud, Gfyoung, Sinhrks, Simon Hawkins, Matthew
Roeschke, Adam Klein, Terji Petersen, Jeff Tratner, Chang She, William
Ayd, Shahar Naveh, Marc Garcia, Jeremy Schendel, Andy Hayden, Daniel
Saxton, Vytautas Jancauskas, Ali McMaster, Pietro Battiston, Skipper
Seabold, Patrick, Kaiqi Dong, Chris-b1, H-vetinari, Stephan Hoyer, and
Marco Gorelli. pandas-dev/pandas: Pandas 1.1.5. dec 2020.

82

Bibliography

[61] Daniel Romer and Kathleen Hall Jamieson. Conspiracy theories as barri-
ers to controlling the spread of COVID-19 in the U.S. Social Science and
Medicine, 263, 2020.

[62] Shubhadeep Roychoudhury, Anandan Das, Pallav Sengupta, Sulagna
Dutta, Shatabhisha Roychoudhury, Arun Paul Choudhury, A. B. Fuza-
yel Ahmed, Saumendra Bhattacharjee, and Petr Slama. Viral Pandemics
of the Last Four Decades: Pathophysiology, Health Impacts and Perspec-
tives. International Journal of Environmental Research and Public Health,
17(24):1–39, dec 2020.

[63] Zhongyuan Ruan, Chaoqing Wang, Pak Ming Hui, and Zonghua Liu. In-
tegrated travel network model for studying epidemics: Interplay between
journeys and epidemic. Scientific Reports, 5, 2015.

[64] Rohit Salgotra, Amiram Moshaiov, Thomas Seidelmann, Dominik Fis-
cher, and Sanaz Mostaghim. Optimal Control Policies to Address the
Pandemic Health-Economy Dilemma. In ieeexplore.ieee.org, pages 720–
727, 2021.

[65] Seyed H. Shahcheraghi, Jamshid Ayatollahi, Alaa A.A. Aljabali, Mad-
hur D. Shastri, Shakti D. Shukla, Dinesh K. Chellappan, Niraj K. Jha,
Krishnan Anand, Naresh K. Katari, Meenu Mehta, Saurabh Satija, Harish
Dureja, Vijay Mishra, Abdulmajeed G. Almutary, Abdullah M. Alnuqay-
dan, Nitin Charbe, Parteek Prasher, Gaurav Gupta, Kamal Dua, Marzieh
Lotfi, Hamid A. Bakshi, and Murtaza M. Tambuwala. An overview of vac-
cine development for COVID-19. Therapeutic Delivery, 12(3):235–244,
mar 2021.

[66] Amit Singhal, Pushpendra Singh, Brejesh Lall, and Shiv Dutt Joshi.
Modeling and prediction of COVID-19 pandemic using Gaussian mixture
model. Chaos, Solitons and Fractals, 138:110023, sep 2020.

[67] Brad Spellberg, Travis B. Nielsen, and Arturo Casadevall. Antibodies,
Immunity, and COVID-19, apr 2021.

[68] S Spielberg. Minority report. 2012.

[69] Sreenivas R Sukumar and James J Nutaro. Agent-based vs. Equation-
based Epidemiological Models A Model Selection Case Study. Technical
report.

83

Bibliography

[70] Michael te Vrugt, Jens Bickmann, and Raphael Wittkowski. Effects of so-
cial distancing and isolation on epidemic spreading modeled via dynamical
density functional theory. Nature Communications 2020 11:1, 11(1):1–11,
nov 2020.

[71] Vikram Thakur and Anu Jain. COVID 2019-suicides: A global psycho-
logical pandemic. Brain, Behavior, and Immunity, 88:952, aug 2020.

[72] Dijana Tolić, Kaj Kolja Kleineberg, and Nino Antulov-Fantulin. Simulat-
ing SIR processes on networks using weighted shortest paths. Scientific
Reports, 8(1):1–10, 2018.

[73] Christian L Vestergaard and Mathieu Génois. Temporal Gillespie Algo-
rithm : Fast Simulation of Contagion Processes on Time- Varying Net-
works. pages 1–28, 2015.

[74] Pauline Vetter, Diem Lan Vu, Arnaud G. L’Huillier, Manuel Schibler,
Laurent Kaiser, and Frederique Jacquerioz. Clinical features of covid-19,
apr 2020.

[75] Chengdi Wang, Zhoufeng Wang, Guangyu Wang, Johnson Yiu Nam Lau,
Kang Zhang, and Weimin Li. COVID-19 in early 2021: current status
and looking forward. Signal Transduction and Targeted Therapy 2021
6:1, 6(1):1–14, mar 2021.

[76] Chongying Wang and Hong Zhao. The Impact of COVID-19 on Anxiety
in Chinese University Students. Frontiers in Psychology, 11:1168, may
2020.

[77] S Wasserman and K Faust. Social network analysis: Methods and appli-
cations. 1994.

[78] Bryan Wilder, Michael J. Mina, and Milind Tambe. Tracking disease
outbreaks from sparse data with Bayesian inference. 2020.

[79] RJ Wilson. Introduction to Graph Theory. llrc.mcast.edu.mt.

[80] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–
82, 1997.

[81] Zifeng Yang, Zhiqi Zeng, Ke Wang, Sook San Wong, Wenhua Liang, Mark
Zanin, Peng Liu, Xudong Cao, Zhongqiang Gao, Zhitong Mai, Jingyi

84

Bibliography

Liang, Xiaoqing Liu, Shiyue Li, Yimin Li, Feng Ye, Weijie Guan, Yifan
Yang, Fei Li, Shengmei Luo, Yuqi Xie, Bin Liu, Zhoulang Wang, Shaobo
Zhang, Yaonan Wang, Nanshan Zhong, and Jianxing He. Modified SEIR
and AI prediction of the epidemics trend of COVID-19 in China under
public health interventions. Journal of Thoracic Disease, 12(3):165–174,
mar 2020.

[82] V. N. Zadorozhnyi and E. B. Yudin. Structural properties of the scale-free
Barabasi-Albert graph. Automation and Remote Control, 73(4):702–716,
2012.

[83] Nan Zhang, Xuguang Chen, Wei Jia, Tianyi Jin, Shenglan Xiao, Wenzhao
Chen, Jian Hang, Cuiyun Ou, Hao Lei, Hua Qian, Boni Su, Jiansen Li,
Dongmei Liu, Weirong Zhang, Peng Xue, Jiaping Liu, Louise B. Weschler,
Jingchao Xie, Yuguo Li, and Min Kang. Evidence for lack of transmission
by close contact and surface touch in a restaurant outbreak of COVID-19.
Journal of Infection, 83(2):207–216, aug 2021.

[84] Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary al-
gorithm based on decomposition. IEEE Transactions on Evolutionary
Computation, 11(6):712–731, dec 2007.

[85] Sheng Zhang, Meng Yuan Diao, Wenbo Yu, Lei Pei, Zhaofen Lin, and
Dechang Chen. Estimation of the reproductive number of novel coro-
navirus (COVID-19) and the probable outbreak size on the Diamond
Princess cruise ship: A data-driven analysis. International Journal of
Infectious Diseases, 93:201–204, apr 2020.

[86] Yi Zhang and Sanjiv Kapoor. Strategic release of lockdowns in a COVID
infection model *. Technical report.

[87] Sophie Zuber and Harald Brüssow. COVID 19: challenges for virologists
in the food industry. Microbial Biotechnology, 13(6):1689–1701, nov 2020.

85

A. Model and Simulation
Parameters

Table A.1.: Parameters of the graph model used for the university example.
Parameter Value Why was the value chosen?

Total number of people 10000 Estimate for the main OvGU campus;
similar size to Karaivanov (2020) [38]

Number of students 7500 Estimate from personally observed ration
of students to staff

Number of lecturers 1500 Estimate from personally observed ration
of students to staff

Number of remaining staff 1000 Remainder of people; could include more
than cafeteria staff in next version

Maximal lecture attendees 100 Personal estimate from faculty of com-
puter science; upwards outliers (e.g. 200
attendees) are not modeled

Minimal lecture attendees 5 Personal estimate of minimal size
Number of lectures 2337 Taken from OvGU system for winter

semester 20/21
Maximal sport attendees 40 Personal estimate of good group size
Minimal sport attendees 5 Personal estimate of minimal viable size
Number of sports 75 Estimate from OvGU university sport

courses
Maximal flat size 5 Personal estimate
Minimal flat size 2 Personal estimate
Number of cafeterias 4 Counted from main OvGU campus

Cafeteria opening days Monday to
Friday

Cafeteria opening hours 9 to 15
Sport course hours 15 to 19

87

A. Model and Simulation Parameters

Table A.2.: Parameters used in the simulation.
Parameter Value Why was the value chosen?

Base infectivity rate 50% From Karaivanov (2020) [38]; used for lec-
tures, flats and global infection

Sport infection rate 70% Increased for close contact between peo-
ple

Cafeteria infection rate 40% Lowered due to people doing take-out or
eating outside

Initial infections 25 Found via testing; see Rahmmandad et al
(2008) [58] as well

Global meeting rate 5% Personal estimate; kept low on purpose to
avoid homogeneous mixing

Incubation rate 19.2% Incubation period is roughly 5 days ac-
cording to Karaivanov (2020) [38].

Mortality rate 5% Calculated from Karaivanov (2020) [38]
Recovery rate 15% Calculated from Karaivanov (2020) [38]
Symptom rate 50% Vetter et al. (2020) [74]; though still a

guess, because clear data is not available

Cost for lecturer attending
lecture

5 Personal estimate

Cost for student attending
lecture

2 Personal estimate

Cost for attending sport
course

1 Personal estimate

Cost for eating in cafeteria 1 Personal estimate
Cost for working at cafete-
ria

5 Personal estimate

Cost factor quarantined flat 0 See Subsection 3.4.3
Cost factor canceled lecture 0 See Subsection 3.4.3

tmax 180 Roughly number of days in a semester

88

Declaration of Authorship

I hereby declare that this thesis was created by me and me alone using only
the stated sources and tools.

Fabian Richardt Magdeburg, 19.11.2021

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Related Work
	Epidemics, their Modeling and Simulation
	The Classic SIR Model and Epidemic Spread
	Social Networks and the Topology of the Spread
	Agent-based Modeling - Autonomous Heterogeneous Actors
	Consideration of Modeling Approaches
	Characteristics and Trade-offs of Containment Policies and Goals

	Evolutionary Multi-Objective Optimization
	Nondominated Sorting Genetic Algorithm II (NSGA-II)
	Nondominated Sorting Genetic Algorithm III (NSGA-III)
	Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D)

	General Graph Theory
	Dynamic Graphs
	Graph Generation

	Model Design
	The Graph Model
	Modeling Time-steps
	Representing Sporadic Infections via a Global Background Mechanic
	Modeling of Epidemic Containment Policies
	Optimization Goals
	A Policy Model for the Graph Representation
	A Cost Model for Policies

	Summary of the Complete Model
	Parameters

	Implementation
	Graph Representation and Generation
	Generation Algorithm
	Graph Scaling and Parameters

	Implementation of the Epidemic Simulation
	Performance Optimizations for the Implementation

	Parameter Optimization with jMetalPy
	Problem Definition
	Simple Crossover and Mutation Operators
	Algorithm Settings
	Experiment Definition

	Tracking Experiment Results

	Experiment Planning and Results
	Stage 1 - Algorithm Selection
	Results for Stage 1

	Stage 2 - Optimization Experiments on Different Graph Sizes
	Results for Stage 2

	Stage 3 - Infection Spread for Specific Policy Sets
	Results for Stage 3

	Evaluation and Discussion
	Evaluation of Stage 1 - Aggregation, Sampling and Algorithm Choice
	Experiments Stage 2 - Evaluation of Optimization and Finding Interesting Individuals
	Experiments Stage 3 - Evaluation of the Location-Based Model
	Summary of the Evaluation

	Conclusion and Future Work
	Bibliography
	Model and Simulation Parameters

