
Fuzzy Systems
Fuzzy Sets and Fuzzy Logic

Prof. Dr. Rudolf Kruse Alexander Dockhorn
{kruse,dockhorn}@ovgu.de

Otto-von-Guericke University of Magdeburg
Faculty of Computer Science

Institute of Intelligent Cooperating Systems

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 1 / 106

http://www.is.ovgu.de/Team/Rudolf+Kruse.html
http://www.is.ovgu.de/Team/Alexander+Dockhorn.html
http://www.ovgu.de/
http://www.fin.ovgu.de/
http://iws.cs.ovgu.de/
mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


Motivation



Motivation

Every day humans use imprecise linguistic terms
e.g. big, fast, about 12 o’clock, old, etc.

All complex human actions are decisions based on such concepts:

• driving and parking a car,

• financial/business decisions,

• law and justice,

• giving a lecture,

• listening to the professor/tutor.

So, these terms and the way they are processed play a crucial role.

Computers need a mathematical model to express and process such
complex semantics.

Concepts of classical mathematics are inadequate for such models.
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Lotfi Asker Zadeh (1965)

Classes of objects in the real world do not have
precisely defined criteria of membership.

Such imprecisely defined “classes” play an
important role in human thinking,

Particularly in domains of pattern recognition,
communication of information, and abstraction.

Zadeh in 2004 (born 1921)
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Example – The Sorites Paradox

If a sand dune is small, adding one grain of sand to it leaves it small.
A sand dune with a single grain is small.

Hence all sand dunes are small.

Paradox comes from all-or-nothing treatment of small.

Degree of truth of “heap of sand is small” decreases by adding one
grain after another.

Certain number of words refer to continuous numerical scales.
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Example – The Sorites Paradox

How many grains of sand has a sand dune at least?

Statement A(n): “n grains of sand are a sand dune.”

Let dn = T (A(n)) denote “degree of acceptance” for A(n).

Then
0 = d0 ≤ d1 ≤ . . . ≤ dn ≤ . . . ≤ 1

can be seen as truth values of a many valued logic.
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Imprecision

Consider the notion bald :
A man without hair on his head is bald,
a hairy man is not bald.

Usually, bald is only partly applicable.

Where to set baldness/non baldness threshold?

Fuzzy set theory does not assume any threshold!
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Lotfi A. Zadeh’s Principle of Incompatibility

“Stated informally, the essence of this principle is that as the
complexity of a system increases, our ability to make precise
and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and signif-
icance (or relevance) become almost mutually exclusive char-
acteristics.”

Fuzzy sets/fuzzy logic are used as mechanism for abstraction of
unnecessary or too complex details.
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Applications of Fuzzy Systems

Control Engineering: Idle Speed Control for VW Beetle

Approximate Reasoning: Fuzzy Rule Based Systems

Data Analysis:

• Fuzzy Clustering

• Statistics with Imprecise data

• Neuro-Fuzzy Systems

Rudolf Kruse received IEEE Fuzzy Pioneer Award for „Learning
Methods for Fuzzy Systems“in 2018
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Washing Machines Use Fuzzy Logic

Source: http://www.siemens-home.com/
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Fuzzy Sets



Membership Functions

Lotfi A. Zadeh (1965)
“A fuzzy set is a class with a continuum of membership grades.”

An imprecisely defined set M can often be characterized by a
membership function µM .

µM associates real number in [0, 1] with each element x ∈ X .

Value of µM at x represents grade of membership of x in M.

A Fuzzy set is defined as mapping

µ : X 7→ [0, 1].

Fuzzy sets µM generalize the notion of a characteristic function

χM : X 7→ {0, 1}.
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Membership Functions

µM(u) = 1 reflects full membership in M.

µM(u) = 0 expresses absolute non-membership in M.

Sets can be viewed as special case of fuzzy sets where only full
membership and absolute non-membership are allowed.

Such sets are called crisp sets or Boolean sets.

Membership degrees 0 < µM < 1 represent partial membership.

0 20 40
0

1

Age

µM

Representing young in “a young person”
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Membership Functions

A Membership function attached to a given linguistic description (such
as young) depends on context:
A young retired person is certainly older than young student.
Even idea of young student depends on the user.

Membership degrees are fixed only by convention:
Unit interval as range of membership grades is arbitrary.
Natural for modeling membership grades of fuzzy sets of real numbers.
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Example – Velocity of Rotating Hard Disk

0

0.5

1.0

v

µ

a b x c d

bb bb

Fuzzy set µ characterizing velocity of rotating hard disk.

Let x be velocity v of rotating hard disk in revolutions per minute.

If no observations about x available, use expert’s knowledge:
“It’s impossible that v drops under a or exceeds d .
“It’s highly certain that any value between [b, c] can occur.”

Additionally, values of v with membership degree of 0.5 are provided.

Interval [a, d ] is called support of the fuzzy set.

Interval [b, c] is denoted as core of the fuzzy set.
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Examples for Fuzzy Numbers

0 1 2 3 4
0

1

IR

µ bb

0 1 2 3 4
0

1

IR

µ

exactly two around two

Exact numerical value has membership degree of 1.

Left: monotonically increasing, right: monotonically decreasing,
i.e. unimodal function.

Terms like around modeled using triangular or Gaussian function.
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Representation of Fuzzy Sets



Definition of a “set”

“By a set we understand every collection made into
a whole of definite, distinct objects of our intuition
or of our thought.” (Georg Cantor).

For a set in Cantor’s sense, the following properties
hold:

• x 6= {x}.

• If x ∈ X and X ∈ Y , then x /∈ Y .

• The Set of all subsets of X is denoted as 2X .

• ∅ is the empty set and thus very important.

Georg Cantor (1845-1918)
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Extension to a fuzzy set

ling. description model

all numbers smaller
than 10 objective

1

10

)

[

characteristic
function of a
set

all numbers almost
equal to 10 subjective

1

10

membership
function of a
“fuzzy set”

Definition

A fuzzy set µ of X 6= ∅ is a function from the reference set X to the
unit interval, i.e. µ : X → [0, 1]. F(X ) represents the set of all fuzzy

sets of X , i.e. F(X )
def
= {µ | µ : X → [0, 1]}.
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Vertical Representation

So far, fuzzy sets were described by
their characteristic/membership function and
assigning degree of membership µ(x) to each element x ∈ X .

That is the vertical representation of the corresponding fuzzy set,
e.g. linguistic expression like “about m”

µm,d(x) =

{

1 −
∣

∣

m−x
d

∣

∣ , if m − d ≤ x ≤ m + d

0, otherwise,

or “approximately between b and c”

µa,b,c,d(x) =



























x−a
b−a

, if a ≤ x < b

1, if b ≤ x ≤ c
x−d
c−d

, if c < x ≤ d

0, if x < a or x > d .
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Horizontal Representation

Another representation is very often applied as follows:

For all membership degrees α belonging to chosen subset of [0, 1],
human expert lists elements of X that fulfill vague concept of fuzzy set
with degree ≥ α.

That is the horizontal representation of fuzzy sets by their α-cuts.

Definition
Let µ ∈ F(X ) and α ∈ [0, 1]. Then the sets

[µ]α = {x ∈ X | µ(x) ≥ α} , [µ]α = {x ∈ X | µ(x) > α}

are called the α-cut and strict α-cut of µ.
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A Simple Example

Let A ⊆ X , χA : X → [0, 1]

χA(x) =

{

1 if x ∈ A,

0 otherwise

Then [χA]α = A for 0 < α ≤ 1.

χA is called indicator function or characteristic function of A.
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An Example

0

1

IR

µ

α

[µα]

a m b

Let µ be triangular function on IR as shown above.

α-cut of µ can be constructed by

1. drawing horizontal line parallel to x-axis through point (0, α),

2. projecting this section onto x-axis.

[µ]α =

{

[a + α(m − a), b − α(b − m)], if 0 < α ≤ 1,

IR, if α = 0.
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Properties of α-cuts I

Any fuzzy set can be described by specifying its α-cuts.

That is the α-cuts are important for application of fuzzy sets.

Theorem
Let µ ∈ F(X ), α ∈ [0, 1] and β ∈ [0, 1].

(a) [µ]0 = X,

(b) α < β =⇒ [µ]α ⊇ [µ]β ,

(c)
⋂

α:α<β
[µ]α = [µ]β .
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Properties of α-cuts II
Theorem (Representation Theorem)
Let µ ∈ F(X ). Then

µ(x) = sup
α∈[0,1]

{

min(α, χ[µ]α (x))
}

where χ[µ]α(x) =

{

1, if x ∈ [µ]α

0, otherwise.

So, fuzzy set can be obtained as upper envelope of its α-cuts.

Simply draw α-cuts parallel to horizontal axis in height of α.

In applications it is recommended to select finite subset L ⊆ [0, 1] of
relevant degrees of membership.

They must be semantically distinguishable.

That is, fix level sets of fuzzy sets to characterize only for these levels.
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System of Sets

In this manner we obtain system of sets

A = (Aα)α∈L, L ⊆ [0, 1], card(L) ∈ IN.

A must satisfy consistency conditions for α, β ∈ L:

(a) 0 ∈ L =⇒ A0 = X , (fixing of reference set)

(b) α < β =⇒ Aα ⊇ Aβ. (monotonicity)

This induces fuzzy set

µA : X → [0, 1],

µA(x) = sup
α∈L

{min(α, χAα(x))} .

If L is not finite but comprises all values [0, 1], then µ must satisfy

(c)
⋂

α:α<β
Aα = Aβ. (condition for continuity)
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Representation of Fuzzy Sets

Definition
FL(X ) denotes the set of all families (Aα)α∈[0,1] of sets that satisfy

(a) A0 = X ,

(b) α < β =⇒ Aα ⊇ Aβ,

(c)
⋂

α:α<β
Aα = Aβ.

Any family A = (Aα)α∈[0,1] of sets of X that satisfy (a)–(b) represents
fuzzy set µA ∈ F(X ) with

µA(x) = sup {α ∈ [0, 1] | x ∈ Aα} .

Vice versa: If there is µ ∈ F(X ),
then family ([µ]α)α∈[0,1] of α-cuts of µ satisfies (a)–(b).
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“Approximately 5 or greater than or equal to 7”
An Exemplary Horizontal View

Suppose that X = [0, 15].
An expert chooses L = {0, 0.25, 0.5, 0.75, 1} and α-cuts:

• A0 = [0, 15],

• A0.25 = [3, 15],

• A0.5 = [4, 6] ∪ [7, 15],

• A0.75 = [4.5, 5.5] ∪ [7, 15],

• A1 = {5} ∪ [7, 15].

0 5 10 15
0

0.25

0.50

0.75

1.00

b b

b b

b b b b

b b b b

bb b b

The family (Aα)α∈L of sets induces upper shown fuzzy set.
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“Approximately 5 or greater than or equal to 7”
An Exemplary Vertical View

µA is obtained as upper envelope of the family A of sets.

The difference between horizontal and vertical view is obvious:

0 5 10 15
0

0.25

0.50

0.75

1.00

The horizontal representation is easier to process in computers.

Also, restricting the domain of x-axis to a discrete set is usually done.
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Horizontal Representation in the Computer

nil

5 5

4.5 5.5

4 6

3 15 nil

7 15 nil

7 15 nil

7 15 nil

Fuzzy sets are usually stored as chain of linear lists.

For each α-level, α 6= 0.

A finite union of closed intervals is stored by their bounds.

This data structure is appropriate for arithmetic operators.
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Support and Core of a Fuzzy Set

Definition
The support S(µ) of a fuzzy set µ ∈ F(X ) is the crisp set that
contains all elements of X that have nonzero membership. Formally

S(µ) = [µ]0 = {x ∈ X | µ(x) > 0} .

Definition
The core C(µ) of a fuzzy set µ ∈ F(X ) is the crisp set that contains
all elements of X that have membership of one. Formally,

C(µ) = [µ]1 = {x ∈ X | µ(x) = 1} .
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Height of a Fuzzy Set

Definition
The height h(µ) of a fuzzy set µ ∈ F(X ) is the largest membership
grade obtained by any element in that set. Formally,

h(µ) = sup
x∈X

{µ(x)} .

h(µ) may also be viewed as supremum of α for which [µ]α 6= ∅.

Definition
A fuzzy set µ is called normal, iff h(µ) = 1.
It is called subnormal, iff h(µ) < 1.
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Convex Fuzzy Sets

Definition
Let X be a vector space. A fuzzy set µ ∈ F(X ) is called fuzzy convex
if its α-cuts are convex for all α ∈ (0, 1].

The membership function of a convex fuzzy set is not a convex
function.

The classical definition: The membership functions are actually
concave.

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 30 / 106

mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


Fuzzy Numbers

Definition
µ is a fuzzy number if and only if µ is normal and [µ]α is bounded,
closed, and convex ∀α ∈ (0, 1].

Example:

The term approximately x0 is often described by a parametrized class
of membership functions, e.g.

µ1(x) = max{0, 1 − c1|x − x0|}, c1 > 0,

µ2(x) = exp(−c2‖x − x0‖p), c2 > 0, p ≥ 1.
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Convex Fuzzy Sets

0

1

IR

α

0

1

IR

α

Theorem

A fuzzy set µ ∈ F(IR) is convex if and only if

µ(λx1 + (1 − λ)x2) ≥ min{µ(x1), µ(x2)}

for all x1, x2 ∈ IR and all λ ∈ [0, 1].
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Fuzzy Numbers – Example

0 1 2 3 4
0

0.5

1.0

[µ]α =















[1, 2] if α ≥ 0.5,

[0.5 + α, 2) if 0 < α < 0.5,

IR if α = 0

Upper semi-continuous functions are often convenient in applications.

In many applications (e.g. fuzzy control) the class of the functions and
their exact parameters have a limited influence on the results.

Only local monotonicity of the functions is really necessary.

In other applications (e.g. medical diagnosis) more precise membership
degrees are needed.
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Multi-valued Logics



Set Operators. . .

. . . are defined by using traditional logics operator

Let X be universe of discourse (universal set):

A ∩ B = {x ∈ X | x ∈ A ∧ x ∈ B}

A ∪ B = {x ∈ X | x ∈ A ∨ x ∈ B}

Ac = {x ∈ X | x /∈ A} = {x ∈ X | ¬(x ∈ A)}

A ⊆ B if and only if (x ∈ A) → (x ∈ B) for all x ∈ X

One idea to define fuzzy set operators: use fuzzy logics.
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The Traditional or Aristotlelian Logic
What is logic about? Different schools speak different languages!

There are raditional, linguistic,
psychological, epistemological and
mathematical schools.

Traditional logic has been founded by
Aristotle (384-322 B.C.).

Aristotlelian logic can be seen as
formal approach to human reasoning.

It’s still used today in Artificial
Intelligence for knowledge
representation and reasoning about
knowledge. Detail of “The School of Athens” by R. Sanzio (1509)

showing Plato (left) and his student Aristotle (right).
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Classical Logic: An Overview

Logic studies methods/principles of reasoning.

Classical logic deals with propositions (either true or false).

The propositional logic handles combination of logical variables.

Key idea: how to express n-ary logic functions with logic primitives,
e.g. ¬, ∧, ∨, →.

A set of logic primitives is complete if any logic function can be
composed by a finite number of these primitives,
e.g. {¬, ∧, ∨}, {¬, ∧}, {¬, →}, {↓} (NOR), {|} (NAND)
(this was also discussed during the 1st exercise).
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Inference Rules

When a variable represented by logical formula is:
true for all possible truth values, i.e. it is called tautology,
false for all possible truth values, i.e. it is called contradiction.

Various forms of tautologies exist to perform deductive inference

They are called inference rules:

(a ∧ (a → b)) → b (modus ponens)

(¬b ∧ (a → b)) → ¬a (modus tollens)

((a → b) ∧ (b → c)) → (a → c) (hypothetical syllogism)

e.g. modus ponens: given two true propositions a and a → b
(premises), truth of proposition b (conclusion) can be inferred.

Every tautology remains a tautology when any of its variables is
replaced with an arbitrary logic formula.
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Boolean Algebra

The propositional logic based on finite set of logic variables is
isomorphic to finite set theory.

Both of these systems are isomorphic to a finite Boolean algebra.

Definition
A Boolean algebra on a set B is defined as quadruple B = (B, +, ·, )
where B has at least two elements (bounds) 0 and 1, + and · are
binary operators on B, and is a unary operator on B for which the
following properties hold.
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Properties of Boolean Algebras I

(B1) Idempotence a + a = a a · a = a

(B2) Commutativity a + b = b + a a · b = b · a

(B3) Associativity (a + b) + c = a + (b + c) (a · b) · c = a · (b · c)
(B4) Absorption a + (a · b) = a a · (a + b) = a

(B5) Distributivity a · (b + c) = (a · b) + (a · c) a + (b · c) = (a + b) · (a + c)
(B6) Universal Bounds a + 0 = a, a + 1 = 1 a · 1 = a, a · 0 = 0
(B7) Complementary a + a = 1 a · a = 0

(B8) Involution a = a

(B9) Dualization a + b = a · b a · b = a + b

Properties (B1)-(B4) are common to every lattice,

i.e. a Boolean algebra is a distributive (B5), bounded (B6), and
complemented (B7)-(B9) lattice,

i.e. every Boolean algebra can be characterized by a partial ordering on
a set, i.e. a ≤ b if a · b = a or, alternatively, if a + b = b.
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Set Theory, Boolean Algebra, Propositional Logic

Every theorem in one theory has a counterpart in each other theory.

Counterparts can be obtained applying the following substitutions:

Meaning Set Theory Boolean Algebra Prop. Logic

values 2X B L(V )
“meet”/“and” ∩ · ∧
“join”/“or” ∪ + ∨
“complement”/“not” c ¬
identity element X 1 1
zero element ∅ 0 0
partial order ⊆ ≤ →

power set 2X , set of logic variables V , set of all combinations L(V ) of
truth values of V

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 40 / 106

mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


The Basic Principle of Classical Logic

The Principle of Bivalence:

“Every proposition is either true or false.”

It has been formally developed by Tarski.

Łukasiewicz suggested to replace it by
The Principle of Valence:

“Every proposition has a truth value.”

Propositions can have intermediate truth value,
expressed by a number from the unit interval [0, 1].

Alfred Tarski (1902-1983)

Jan Łukasiewicz (1878-1956)
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The Traditional or Aristotlelian Logic II
Short History

Aristotle introduced a logic of terms and drawing conclusion from two
premises.

The great Greeks (Chrisippus) also developed logic of propositions.

Jan Łukasiewicz founded the multi-valued logic.

The multi-valued logic is to fuzzy set theory what classical logic
is to set theory.
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Three-valued Logics

A 2-valued logic can be extended to a 3-valued logic in several ways,

i.e. different three-valued logics have been well established:

truth, falsity, indeterminacy are denoted by 1, 0, and 1/2, resp.

The negation ¬a is defined as 1 − a, i.e. ¬1 = 0, ¬0 = 1 and
¬1/2 = 1/2.

Other primitives, e.g. ∧, ∨, →, ↔, differ from logic to logic.

Five well-known three-valued logics (named after their originators) are
defined in the following.
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Primitives of Some Three-valued Logics

Łukasiewicz Bochvar Kleene Heyting Reichenbach
a b ∧ ∨ → ↔ ∧ ∨ → ↔ ∧ ∨ → ↔ ∧ ∨ → ↔ ∧ ∨ → ↔

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
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1
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

All of them fully conform the usual definitions for a, b ∈ {0, 1}.
They differ from each other only in their treatment of 1/2.
Question: Do they satisfy the law of contradiction (a ∧ ¬a = 0) and
the law of excluded middle (a ∨ ¬a = 1)?
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n-valued Logics

After the three-valued logics: generalizations to n-valued logics for
arbitrary number of truth values n ≥ 2.

In the 1930s, various n-valued logics were developed.

Usually truth values are assigned by rational number in [0, 1].

Key idea: uniformly divide [0, 1] into n truth values.

Definition
The set Tn of truth values of an n-valued logic is defined as

Tn =

{

0 =
0

n − 1
,

1

n − 1
,

2

n − 1
, . . . ,

n − 2

n − 1
,

n − 1

n − 1
= 1

}

.

These values can be interpreted as degree of truth.
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Primitives in n-valued Logics

Łukasiewicz proposed first series of n-valued logics for n ≥ 2.

In the early 1930s, he simply generalized his three-valued logic.

It uses truth values in Tn and defines primitives as follows:

¬a = 1 − a

a ∧ b = min(a, b)

a ∨ b = max(a, b)

a → b = min(1, 1 + b − a)

a ↔ b = 1 − |a − b|

The n-valued logic of Łukasiewicz is denoted by Ln.

The sequence (L2, L3, . . . , L∞) contains the classical two-valued logic
L2 and an infinite-valued logic L∞ (rational countable values T∞).

The infinite-valued logic L1 (standard Łukasiewicz logic) is the logic
with all real numbers in [0, 1] (1 = cardinality of continuum).
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From Logic to Fuzzy Logic



Zadeh’s fuzzy logic proposal was much simpler

In 1965, he proposed a logic with values in [0, 1]:

¬a = 1 − a,

a ∧ b = min(a, b),

a ∨ b = max(a, b).

The set operators are defined pointwise as follows for
µ, µ′:

¬µ : X → X ,¬µ(x) = 1 − µ(x),

µ ∧ µ′ : X → X(µ ∧ µ′)(x) = min{µ(x), µ′(x)},

µ ∨ µ′ : X → X(µ ∨ µ′)(x) = max{µ(x), µ′(x)}.

Zadeh in 2004

(born 1921)
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Standard Fuzzy Set Operators – Example

fuzzy complement

fuzzy intersection

two fuzzy sets

fuzzy union
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Is Zadeh’s logic a Boolean algebra?

Theorem
(F(X ), ∧, ∨, ¬) is a complete distributive lattice but no Boolean
algebra.

Proof.
Consider µ : X → X with x 7→ 0.5, then ¬µ(x) = 0.5 for all x and
µ ∧ ¬µ 6= χ∅.
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Fuzzy Set Theory



Definition
Let X 6= ∅ be a set.

2X def
= {A | A ⊆ X} power set of X ,

A ∈ 2X , χA : X → {0, 1} characteristic function,

X (X)
def
=

{

χA

∣

∣ A ∈ 2X
}

set of characteristic functions.

Theorem

(2X , ∩, ∪,c ) is Boolean algebra,

φ : 2X → X (X), φ(A)
def
= χA is bijection.

Theorem
(X (X), ∧, ∨, ¬) is Boolean algebra where

χA∧B
def
= min{χA, χB}, χA∨B

def
= max{χA, χB}, χ¬A

def
= 1 − χA.
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What does a fuzzy set represent?

Consider fuzzy proposition A (“approximately two”) on IR

fuzzy logic offers means to construct such imprecise sentences

0 1 2 3 4
0

1 µAbb

x

A defined by membership function µA, i.e. truth values ∀x ∈ IR

let x ∈ IR be a subject/observation

µA(x) is the degree of truth that x is A

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 51 / 106

mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


Standard Fuzzy Set Operators

Definition

We define the following algebraicoperators on F(X ):

(µ ∧ µ′)(x)
def
= min{µ(x), µ′(x)} intersection (“AND”),

(µ ∨ µ′)(x)
def
= max{µ(x), µ′(x)} union (“OR”),

¬µ(x)
def
= 1 − µ(x) complement (“NOT”).

µ is subset of µ′ if and only if µ ≤ µ′.

Theorem
(F(X ), ∧, ∨, ¬) is a complete distributive lattice but no boolean
algebra.
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Standard Fuzzy Set Operators – Example

fuzzy complement

fuzzy intersection

two fuzzy sets

fuzzy union
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Fuzzy Set Complement



Fuzzy Complement/Fuzzy Negation

Definition

Let X be a given set and µ ∈ F(X ). Then the complement µ̄ can be
defined pointwise by µ̄(x) := ∼ (µ(x)) where ∼ : [0, 1] → [0, 1]
satisfies the conditions

∼(0) = 1, ∼(1) = 0

and

for x , y ∈ [0, 1], x ≤ y =⇒ ∼ x ≥ ∼ y (∼ is non-increasing).

Abbreviation: ∼ x := ∼(x)
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Strict and Strong Negations

Additional properties may be required

• x , y ∈ [0, 1], x < y =⇒ ∼ x > ∼ y (∼ is strictly decreasing)

• ∼ is continuous

• ∼ ∼ x = x for all x ∈ [0, 1] (∼ is involutive)

According to conditions, two subclasses of negations are defined:

Definition
A negation is called strict if it is also strictly decreasing and
continuous. A strict negation is said to be strong if it is involutive, too.

∼ x = 1 − x2, for instance, is strict, not strong, thus not involutive
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Families of Negations

standard negation: ∼ x = 1 − x

threshold negation: ∼θ(x) =

{

1 if x ≤ θ

0 otherwise

Cosine negation: ∼ x =
1

2
(1 + cos(πx))

Sugeno negation: ∼λ(x) =
1 − x

1 + λx
, λ > −1

Yager negation: ∼λ(x) = (1 − x
λ)

1
λ

standard cosine Sugeno Yager
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Two Extreme Negations

intuitionistic negation ∼i (x) =

{

1 if x = 0

0 if x > 0

dual intuitionistic negation ∼di (x) =

{

1 if x < 1

0 if x = 1

Both negations are not strictly increasing, not continuous, not
involutive

Thus they are neither strict nor strong

They are “optimal” since their notions are nearest to crisp negation

∼i and ∼di are two extreme cases of negations

For any negation ∼ the following holds

∼i ≤ ∼ ≤ ∼di
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Inverse of a Strict Negation

Any strict negation ∼ is strictly decreasing and continuous.

Hence one can define its inverse ∼−1.

∼−1 is also strict but in general differs from ∼.

∼−1 = ∼ if and only if ∼ is involutive.

Every strict negation ∼ has a unique value 0 < s∼ < 1 such
that ∼ s∼ = s∼.

s∼ is called membership crossover point.

A(a) > s∼ if and only if Ac(a) < s∼ where Ac is defined via ∼.

∼−1(s∼) = s∼ always holds as well.
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Representation of Negations

Any strong negation can be obtained from standard negation.

Let a, b ∈ IR, a ≤ b.

Let ϕ : [a, b] → [a, b] be continuous and strictly increasing.

ϕ is called automorphism of the interval [a, b] ⊂ IR.

Theorem
A function ∼ : [0, 1] → [0, 1] is a strong negation if and only if there
exists an automorphism ϕ of the unit interval such that for all
x ∈ [0, 1] the following holds

∼ϕ(x) = ϕ−1(1 − ϕ(x)).

∼ϕ(x) = ϕ−1(1− ϕ(x)) is called ϕ-transform of the standard negation.

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 59 / 106

mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


Fuzzy Set Intersection and Union



Classical Intersection and Union

Classical set intersection represents logical conjunction.

Classical set union represents logical disjunction.

Generalization from {0, 1} to [0, 1] as follows:

x ∧ y 0 1

0 0 0
1 0 1

0
10

1
b

b

bb

bb

x ∨ y 0 1

0 0 1
1 1 1

0
10

1
bb

bb

b
b
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Fuzzy Set Intersection and Union

Let A, B be fuzzy subsets of X , i.e. A, B ∈ F(X ).

Their intersection and union can be defined pointwise using:

(A ∩ B)(x) = ⊤(A(x), B(x)) where ⊤ : [0, 1]2 → [0, 1]

(A ∪ B)(x) = ⊥(A(x), B(x)) where ⊥ : [0, 1]2 → [0, 1].
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Triangular Norms and Conorms I

⊤ is a triangular norm (t-norm) ⇐⇒ ⊤ satisfies conditions T1-T4

⊥ is a triangular conorm (t-conorm) ⇐⇒ ⊥ satisfies C1-C4

for all x , y ∈ [0, 1], the following laws hold

Identity Law
T1: ⊤(x , 1) = x (A ∩ X = A)
C1: ⊥(x , 0) = x (A ∪ ∅ = A).

Commutativity
T2: ⊤(x , y) = ⊤(y , x) (A ∩ B = B ∩ A),
C2: ⊥(x , y) = ⊥(y , x) (A ∪ B = B ∪ A).
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Triangular Norms and Conorms II

for all x , y , z ∈ [0, 1], the following laws hold

Associativity
T3: ⊤(x , ⊤(y , z)) = ⊤(⊤(x , y), z) (A ∩ (B ∩ C)) = ((A ∩ B) ∩ C),
C3: ⊥(x , ⊥(y , z)) = ⊥(⊥(x , y), z) (A ∪ (B ∪ C)) = ((A ∪ B) ∪ C).

Monotonicity
y ≤ z implies
T4: ⊤(x , y) ≤ ⊤(x , z)
C4: ⊥(x , y) ≤ ⊥(x , z).
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Triangular Norms and Conorms III

⊤ is a triangular norm (t-norm) ⇐⇒ ⊤ satisfies conditions T1-T4

⊥ is a triangular conorm (t-conorm) ⇐⇒ ⊥ satisfies C1-C4

Both identity law and monotonicity respectively imply

∀x ∈ [0, 1] : ⊤(0, x) = 0,

∀x ∈ [0, 1] : ⊥(1, x) = 1,

for any t-norm ⊤ :⊤(x , y) ≤ min(x , y),

for any t-conorm ⊥ :⊥(x , y) ≥ max(x , y).

note: x = 1 ⇒ T (0, 1) = 0 and
x ≤ 1 ⇒ T (x , 0) ≤ T (1, 0) = T (0, 1) = 0

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 64 / 106

mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


De Morgan Triplet I

For every ⊤ and strong negation ∼, one can define t-conorm ⊥ by

⊥(x , y) = ∼ ⊤(∼ x , ∼ y), x , y ∈ [0, 1].

Additionally, in this case ⊤(x , y) = ∼ ⊥(∼ x , ∼ y), x , y ∈ [0, 1].

⊥, ⊤ are called N-dual t-conorm and N-dual t-norm to ⊤, ⊥, resp.

In case of the standard negation ∼ x = 1 − x for x ∈ [0, 1],
N-dual ⊥ and ⊤ are called dual t-conorm and dual t-norm, resp.

⊥(x , y) = ∼ ⊤(∼ x , ∼ y) expresses “fuzzy” De Morgan’s law.

note: De Morgan’s laws (A ∪ B)c = Ac ∩ Bc , (A ∩ B)c = Ac ∪ Bc
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De Morgan Triplet II

Definition
The triplet (⊤, ⊥, ∼) is called De Morgan triplet if and only if

⊤ is t-norm, ⊥ is t-conorm, ∼ is strong negation,

⊤, ⊥ and ∼ satisfy ⊥(x , y) = ∼ ⊤(∼ x , ∼ y).

In the following, some important De Morgan triplets will be shown,

only the most frequently used and important ones.

In all cases, the standard negation ∼ x = 1 − x is considered.
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The Minimum and Maximum I

⊤min(x , y) = min(x , y), ⊥max(x , y) = max(x , y)

Minimum is the greatest t-norm and max is the weakest t-conorm.

⊤(x , y) ≤ min(x , y) and ⊥(x , y) ≥ max(x , y) for any ⊤ and ⊥
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The Minimum and Maximum II

⊤min and ⊥max can be easily processed numerically and visually,

e.g. linguistic values young and approx. 20 described by µy , µ20.

⊤min(µy , µ20) is shown below.

0 10 20 30 40 50
0

1
µy µ20

µy ∩ µ20
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The Product and Probabilistic Sum

⊤prod(x , y) = x · y , ⊥sum(x , y) = x + y − x · y

Note that use of product and its dual has nothing to do with
probability theory.
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The Łukasiewicz t-norm and t-conorm

⊤Łuka(x , y) = max{0, x + y − 1}, ⊥Łuka(x , y) = min{1, x + y}

⊤Łuka, ⊥Łuka are also called bold intersection and bounded sum.
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The Nilpotent Minimum and Maximum

⊤min0(x , y) =

{

min(x , y) if x + y > 1

0 otherwise

⊥max1(x , y) =

{

max(x , y) if x + y < 1

1 otherwise

Found in 1992 and independently rediscovered in 1995.
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The Drastic Product and Sum

⊤−1(x , y) =

{

min(x , y) if max(x , y) = 1

0 otherwise

⊥−1(x , y) =

{

max(x , y) if min(x , y) = 0

1 otherwise

⊤−1 is the weakest t-norm, ⊥−1 is the strongest t-conorm.

⊤−1 ≤ ⊤ ≤ ⊤min, ⊥max ≤ ⊥ ≤ ⊥−1 for any ⊤ and ⊥
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Examples of Fuzzy Intersections

t-norm ⊤min

t-norm ⊤Łuka

t-norm ⊤prod

t-norm ⊤−1

Note that all fuzzy intersections are contained within upper left graph
and lower right one.
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Examples of Fuzzy Unions

t-conorm ⊥max

t-conorm ⊥Łuka

t-conorm ⊥sum

t-conorm ⊥−1

Note that all fuzzy unions are contained within upper left graph and
lower right one.
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The Special Role of Minimum and Maximum I

⊤min and ⊥max play key role for intersection and union, resp.

In a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and
monotonicity, they also satisfy the following properties for all
x , y , z ∈ [0, 1]:

Distributivity
⊥max(x , ⊤min(y , z)) = ⊤min(⊥max(x , y), ⊥max(x , z)),
⊤min(x , ⊥max(y , z)) = ⊥max(⊤min(x , y), ⊤min(x , z))

Continuity

⊤min and ⊥max are continuous.
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The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal

x < y implies ⊤min(x , x) < ⊤min(y , y) and ⊥max(x , x) < ⊥max(y , y).

Idempotency

⊤min(x , x) = x , ⊥max(x , x) = x

Absorption

⊤min(x , ⊥max(x , y)) = x , ⊥max(x , ⊤min(x , y)) = x

Non-compensation
x < y < z imply ⊤min(x , z) 6= ⊤min(y , y) and
⊥max(x , z) 6= ⊥max(y , y).
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The Special Role of Minimum and Maximum III

Is (F(X ), ⊤min, ⊥max, ∼) a boolean algebra?

Consider the properties (B1)-(B9) of any Boolean algebra.

For (F(X ), ⊤min, ⊥max, ∼) with strong negation ∼
only complementary (B7) does not hold.

Hence (F(X ), ⊤min, ⊥max, ∼) is a completely distributive lattice with
identity element µX and zero element µ∅.

No lattice (F(X ), ⊤, ⊥, ∼) forms a Boolean algebra

due to the fact that complementary (B7) does not hold:

• There is no complement/negation ∼ with ⊤(A, ∼ A) = µ∅.

• There is no complement/negation ∼ with ⊥(A, ∼ A) = µX .
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Complementary Property of Fuzzy Sets

Using fuzzy sets, it’s impossible to keep up a Boolean algebra.

Verify, e.g. that law of contradiction is violated, i.e.

(∃x ∈ X )(A ∩ Ac)(x) 6= ∅.

We use min, max and strong negation ∼ as fuzzy set operators.

So we need to show that

min{A(x), 1 − A(x)} = 0

is violated for at least one x ∈ X .

easy: This Equation is violated for all A(x) ∈ (0, 1).

It is satisfied only for A(x) ∈ {0, 1}.

R. Kruse, A. Dockhorn FS – Fuzzy Sets and Fuzzy Logic Part 1 78 / 106

mailto:kruse@ovgu.de
mailto:dockhorn@ovgu.de


The concept of a pseudoinverse

Definition

Let f : [a, b] → [c , d ] be a monotone function between two closed
subintervals of extended real line. The pseudoinverse function to f is
the function f (−1) : [c , d ] → [a, b] defined as

f (−1)(y) =

{

sup{x ∈ [a, b] | f (x) < y} for f non-decreasing,

sup{x ∈ [a, b] | f (x) > y} for f non-increasing.
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Continuous Archimedean t-norms and t-conorms

broad class of problems relates to representation of multi-place
functions by composition of a “simpler” function, e.g.

K (x , y) = f (−1)(f (x) + f (y))

So, one should consider suitable subclass of all t-norms.

Definition
A t-norm ⊤ is
(a) continuous if ⊤ as function is continuous on unit interval,

(b) Archimedean if ⊤ is continuous and ⊤(x , x) < x for all x ∈]0, 1[.

Definition
A t-conorm ⊥ is
(a) continuous if ⊥ as function is continuous on unit interval,

(b) Archimedean if ⊥ is continuous and ⊥(x , x) > x for all x ∈]0, 1[.
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Continuous Archimedean t-norms
Theorem
A t-norm ⊤ is continuous and Archimedean if and only if there exists
a strictly decreasing and continuous function f : [0, 1] → [0, ∞] with
f (1) = 0 such that

⊤(x , y) = f (−1)(f (x) + f (y)) (1)

where

f (−1)(x) =

{

f −1(x) if x ≤ f (0)

0 otherwise

is the pseudoinverse of f . Moreover, this representation is unique up
to a positive multiplicative constant.

⊤ is generated by f if ⊤ has representation (1).

f is called additive generator of ⊤.
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Additive Generators of t-norms – Examples

Find an additive generator f of ⊤Łuka(x , y) = max{x + y − 1, 0}.

for instance fŁuka(x) = 1 − x

then, f
(−1)

Łuka (x) = max{1 − x , 0}

thus ⊤Łuka(x , y) = f
(−1)

Łuka (fŁuka(x) + fŁuka(y))

Find an additive generator f of ⊤prod(x , y) = x · y .

to be discussed in the exercise

hint: use of logarithmic and exponential function
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Continuous Archimedean t-conorms
Theorem
A t-conorm ⊥ is continuous and Archimedean if and only if there
exists a strictly increasing and continuous function g : [0, 1] → [0, ∞]
with g(0) = 0 such that

⊥(x , y) = g (−1)(g(x) + g(y)) (2)

where

g (−1)(x) =

{

g−1(x) if x ≤ g(1)

1 otherwise

is the pseudoinverse of g. Moreover, this representation is unique up
to a positive multiplicative constant.

⊥ is generated by g if ⊥ has representation (2).

g is called additive generator of ⊥.
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Additive Generators of t-conorms – Two

Examples

Find an additive generator g of ⊥Łuka(x , y) = min{x + y , 1}.

for instance gŁuka(x) = x

then, g
(−1)
Łuka(x) = min{x , 1}

thus ⊥Łuka(x , y) = g
(−1)
Łuka (gŁuka(x) + gŁuka(y))

Find an additive generator g of ⊥sum(x , y) = x + y − x · y .

to be discussed in the exercise

hint: use of logarithmic and exponential function

Now, let us examine some typical families of operations.
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Hamacher Family I

⊤α(x , y) =
x · y

α + (1 − α)(x + y + x · y)
, α ≥ 0,

⊥β(x , y) =
x + y + (β − 1) · x · y

1 + β · x · y
, β ≥ −1,

∼γ(x) =
1 − x

1 + γx
, γ > −1

Theorem
(⊤, ⊥, ∼) is a De Morgan triplet such that

⊤(x , y) = ⊤(x , z) =⇒ y = z,

⊥(x , y) = ⊥(x , z) =⇒ y = z,

∀z ≤ x ∃y , y
′

such that ⊤(x , y) = z, ⊥(z, y
′) = x

and ⊤ and ⊥ are rational functions if and only if there are numbers α ≥ 0, β ≥ −1
and γ > −1 such that α = 1+β

1+γ
and ⊤ = ⊤α, ⊥ = ⊥β and ∼ = ∼γ .
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Hamacher Family II

Additive generators fα of ⊤α are

fα =

{

1−x
x

if α = 0

log α+(1−α)x
x

if α > 0.

Each member of these families is strict t-norm and strict t-conorm,
respectively.

Members of this family of t-norms are decreasing functions of
parameter α.
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Sugeno-Weber Family I

For λ > 1 and x , y ∈ [0, 1], define

⊤λ(x , y) = max

{

x + y − 1 + λxy

1 + λ
, 0

}

,

⊥λ(x , y) = min {x + y + λxy , 1} .

λ = 0 leads to ⊤Łuka and ⊥Łuka, resp.

λ → ∞ results in ⊤prod and ⊥sum, resp.

λ → −1 creates ⊤−1 and ⊥−1, resp.
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Sugeno-Weber Family II

Additive generators fλ of ⊤λ are

fλ(x) =







1 − x if λ = 0

1 − log(1+λx)
log(1+λ) otherwise.

{⊤λ}λ>−1 are increasing functions of parameter λ.

Additive generators of ⊥λ are gλ(x) = 1 − fλ(x).
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Yager Family

For 0 < p < ∞ and x , y ∈ [0, 1], define

⊤p(x , y) = max
{

1 − ((1 − x)p + (1 − y)p)1/p, 0
}

,

⊥p(x , y) = min
{

(xp + yp)1/p , 1
}

.

Additive generators of ⊤p are

fp(x) = (1 − x)p ,

and of ⊥p are
gp(x) = xp.

{⊤p}0<p<∞ are strictly increasing in p.

Note that limp→+0 ⊤p = ⊤Łuka.
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Fuzzy Sets Inclusion



Fuzzy Implications
crisp: x ∈ A ⇒ x ∈ B, fuzzy: x ∈ µ ⇒ x ∈ µ′
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Definitions of Fuzzy Implications

One way of defining I is to use ∀a, b ∈ {0, 1}

I(a, b) = ¬a ∨ b.

In fuzzy logic, disjunction and negation are t-conorm and fuzzy
complement, resp., thus ∀a, b ∈ [0, 1]

I(a, b) = ⊥(∼ a, b).

Another way in classical logic is ∀a, b ∈ {0, 1}

I(a, b) = max {x ∈ {0, 1} | a ∧ x ≤ b} .

In fuzzy logic, conjunction represents t-norm, thus ∀a, b ∈ [0, 1]

I(a, b) = sup {x ∈ [0, 1] | ⊤(a, x) ≤ b} .

So, classical definitions are equal, fuzzy extensions are not.
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Definitions of Fuzzy Implications

I(a, b) = ⊥(∼ a, b) may also be written as either

I(a, b) = ¬a ∨ (a ∧ b) or

I(a, b) = (¬a ∧ ¬b) ∨ b.

Fuzzy logical extensions are thus, respectively,

I(a, b) = ⊥(∼ a, ⊤(a, b)),

I(a, b) = ⊥(⊤(∼ a, ∼ b), b)

where (⊤, ⊥, n) must be a De Morgan triplet.

So again, classical definitions are equal, fuzzy extensions are not.

reason: Law of absorption of negation does not hold in fuzzy logic.
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S-Implications

Implications based on I(a, b) = ⊥(∼ a, b) are called S-implications.

Symbol S is often used to denote t-conorms.

Four well-known S-implications are based on ∼ a = 1 − a:

Name I(a, b) ⊥(a, b)

Kleene-Dienes Imax(a, b) = max(1 − a, b) max(a, b)

Reichenbach Isum(a, b) = 1 − a + ab a + b − ab

Łukasiewicz IŁ(a, b) = min(1, 1 − a + b) min(1, a + b)

largest I−1(a, b) =















b, if a = 1

1 − a, if b = 0

1, otherwise















b, if a = 0

a, if b = 0

1, otherwise
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S-Implications

The drastic sum ⊥−1 leads to the largest S-implication I−1 due to the
following theorem:

Theorem
Let ⊥1, ⊥2 be t-conorms such that ⊥1(a, b) ≤ ⊥2(a, b) for all
a, b ∈ [0, 1]. Let I1, I2 be S-implications based on same fuzzy
complement ∼ and ⊥1, ⊥2, respectively. Then I1(a, b) ≤ I2(a, b) for
all a, b ∈ [0, 1].

Since ⊥−1 leads to the largest S-implication, similarly, ⊥max leads to
the smallest S-implication Imax.

Furthermore,
Imax ≤ Isum ≤ IŁ ≤ I−1.
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R-Implications

I(a, b) = sup {x ∈ [0, 1] | ⊤(a, x) ≤ b} leads to R-implications.

Symbol R represents close connection to residuated semigroup.

Three well-known R-implications are based on ∼ a = 1 − a:

• Standard fuzzy intersection leads to Gödel implication

Imin(a, b) = sup {x | min(a, x) ≤ b} =

{

1, if a ≤ b

b, if a > b.

• Product leads to Goguen implication

Iprod(a, b) = sup {x | ax ≤ b} =

{

1, if a ≤ b

b/a, if a > b.

• Łukasiewicz t-norm leads to Łukasiewicz implication

IŁ(a, b) = sup {x | max(0, a + x − 1) ≤ b} = min(1, 1 − a + b).
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R-Implications

Name Formula ⊤(a, b) =

Gödel Imin(a, b) =

{

1, if a ≤ b

b, if a > b
min(a, b)

Goguen Iprod(a, b) =

{

1, if a ≤ b

b/a, if a > b
ab

Łukasiewicz IŁ(a, b) = min(1, 1 − a + b) max(0, a + b − 1)

largest IL(a, b) =

{

b, if a = 1

1, otherwise
not defined

IL is actually the limit of all R-implications.
It serves as least upper bound.
It cannot be defined by I(a, b) = sup {x ∈ [0, 1] | ⊤(a, x) ≤ b}.
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R-Implications

Theorem
Let ⊤1, ⊤2 be t-norms such that ⊤1(a, b) ≤ ⊤2(a, b) for all
a, b ∈ [0, 1]. Let I1, I2 be R-implications based on ⊤1, ⊤2, respectively.
Then I1(a, b) ≥ I2(a, b) for all a, b ∈ [0, 1].

It follows that Gödel Imin is the smallest R-implication.

Furthermore,
Imin ≤ Iprod ≤ IŁ ≤ IL.
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QL-Implications

Implications based on I(a, b) = ⊥(∼ a, ⊤(a, b)) are called
QL-implications (QL from quantum logic).

Four well-known QL-implications are based on ∼ a = 1 − a:
• Standard min and max lead to Zadeh implication

IZ (a, b) = max[1 − a, min(a, b)].

• The algebraic product and sum lead to

Ip(a, b) = 1 − a + a2b.

• Using ⊤Ł and ⊥Ł leads to Kleene-Dienes implication again.

• Using ⊤−1 and ⊥−1 leads to

Iq(a, b) =















b, if a = 1

1 − a, if a 6= 1, b 6= 1

1, if a 6= 1, b = 1.
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Axioms

All I come from generalizations of the classical implication.

They collapse to the classical implication when truth values are 0 or 1.

Generalizing classical properties leads to following axioms:

1) a ≤ b implies I(a, x) ≥ I(b, x) (monotonicity in 1st argument)

2) a ≤ b implies I(x , a) ≤ I(x , b) (monotonicity in 2nd argument)

3) I(0, a) = 1 (dominance of falsity)

4) I(1, b) = b (neutrality of truth)

5) I(a, a) = 1 (identity)

6) I(a, I(b, c)) = I(b, I(a, c)) (exchange property)

7) I(a, b) = 1 if and only if a ≤ b (boundary condition)

8) I(a, b) = I(∼ b, ∼ a) for fuzzy complement ∼ (contraposition)

9) I is a continuous function (continuity)
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Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theorem
A function I : [0, 1]2 → [0, 1] satisfies Axioms 1–9 of fuzzy implications
for a particular fuzzy complement ∼ if and only if there exists a strict
increasing continuous function f : [0, 1] → [0, ∞) such that f (0) = 0,

I(a, b) = f (−1)(f (1) − f (a) + f (b))

for all a, b ∈ [0, 1], and

∼ a = f −1(f (1) − f (a))

for all a ∈ [0, 1].
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Example

Consider fλ(a) = ln(1 + λa) with a ∈ [0, 1] and λ > 0.

Its pseudo-inverse is

f
(−1)

λ (a) =

{

ea−1
λ , if 0 ≤ a ≤ ln(1 + λ)

1, otherwise.

The fuzzy complement generated by f for all a ∈ [0, 1] is

nλ(a) =
1 − a

1 + λa
.

The resulting fuzzy implication for all a, b ∈ [0, 1] is thus

Iλ(a, b) = min

(

1,
1 − a + b + λb

1 + λa

)

.

If λ ∈ (−1, 0), then Iλ is called pseudo-Łukasiewicz implication.
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List of Implications in Many Valued Logics

Name Class Form I(a, b) = Axioms Complement

Gaines-Rescher

{

1 if a ≤ b

0 otherwise
1–8 1 − a

Gödel R

{

1 if a ≤ b

b otherwise
1–7

Goguen R

{

1 if a ≤ b

b/a otherwise
1–7, 9

Kleene-Dienes S,QL max(1 − a, b) 1–4, 6, 8, 9 1 − a

Łukasiewicz R, S min(1, 1 − a + b) 1–9 1 − a

Pseudo-Łukasiewicz 1 R, S min
[

1,
1−a+(1+λ)b

1+λa

]

1–9 1−a
1+λa

, (λ > −1)

Pseudo-Łukasiewicz 2 R, S min [1, 1 − aw + bw ] 1–9 (1 − aw )
1
w , (w > 0)

Reichenbach S 1 − a + ab 1–4, 6, 8, 9 1 − a

Wu

{

1 if a ≤ b

min(1 − a, b) otherwise
1–3,5,7,8 1 − a

Zadeh QL max[1 − a, min(a, b)] 1–4, 9 1 − a
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Which Fuzzy Implication?

Since the meaning of I is not unique, we must resolve the following
question:

Which I should be used for calculating the fuzzy relation R?

Hence meaningful criteria are needed.

They emerge from various fuzzy inference rules, i.e. modus ponens,
modus tollens, hypothetical syllogism.
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