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Motivation

Every day humans use imprecise linguistic terms
e.g. big, fast, about 12 o’clock, old, etc.

All complex human actions are decisions based on such concepts:
• driving and parking a car,
• financial/business decisions,
• law and justice,
• giving a lecture,
• listening to the professor/tutor.

So, these terms and the way they are processed play a crucial role.

Computers need a mathematical model to express and process such  
complex semantics.

Concepts of classical mathematics are inadequate for such models.
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Lotfi Asker Zadeh

Classes of objects in the real world do not have  
precisely defined criteria of membership.

Such imprecisely defined “classes” play an  
important role in human thinking,

Particularly in domains of pattern recognition,  
communication of information, and abstraction.
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Lotfi A. Zadeh’s Principle of Incompatibility

“Stated informally, the essence of this principle is that as the
complexity of a system increases, our ability to make precise
and yet significant statements about its behavior diminishes
until a threshold is reached beyond which precision and signif-
icance (or relevance) become almost mutually exclusive char-
acteristics.”

Fuzzy sets/fuzzy logic are used as mechanism for abstraction of  
unnecessary or too complex details.
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Example – The Sorites Paradox

If a sand dune is small, adding one grain of sand to it leaves it small.
A sand dune with a single grain is small.

Hence all sand dunes are small.

Paradox comes from all-or-nothing treatment of small.

Degree of truth of “heap of sand is small” decreases by adding one  
grain after another.

Certain number of words refer to continuous numerical scales.
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Example – The Sorites Paradox

How many grains of sand has a sand dune at least?

Statement A(n): “n grains of sand are a sanddune.”
Let dn = T (A(n)) denote “degree of acceptance” for A(n).  

Then
0 = d0 ≤ d1 ≤ . . . ≤ dn ≤ . . . ≤1

can be seen as truth values of a many valued logic.
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Toy Example

Consider the notion bald:
A man without hair on his head is bald,  
a hairy man is not bald.

Usually, bald is only partly applicable.

Where to set baldness/non baldness threshold?

Fuzzy set theory does not assume any threshold!
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Applications of Fuzzy Systems

Control Engineering

Approximate Reasoning

Data Sciences

Rudolf Kruse received IEEE Fuzzy Pioneer Award for 
„Learning  Methods for Fuzzy Systems“ in 2018
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Fuzzy Sets - Basics

Part1 1 /104



Fuzzy sets are generalizations of classical sets
ling. description model

all numberssmaller
than 10 objective

10

1 )

[

characteristic  
function of a  
set

all numbers almost 
equal to 10 subjective

1

10

membership  
function of a  
“fuzzy set”

Definition
A fuzzy set µ of X is a function from the reference set X to theunit 
interval, i.e. µ : X → [0, 1]. F(X ) represents the set of all fuzzy
sets of X, i.e. F(X) := {µ | µ : X → [0, 1]}.

Part1 16 / 104



Membership Functions
µM (u) = 1 reflects full membership in M.
µM (u) = 0 expresses absolute non-membership in M.
Sets can be viewed as special case of fuzzy sets where only full  
membership and absolute non-membership are allowed.

Such sets are called crisp sets or Boolean sets.
Membership degrees 0 <  µ M < 1 represent partial membership.

1

µM

0 Age
0 20 40

Representing young in “a young person”
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Membership Functions

A Membership function attached to a given linguistic description 
(such  as young ) depends on t               h            e                         context – it is subjective.

A young retired person is certainly older than a young student.  
Even the idea of young student depends on the user.

Membership degrees are fixed only by convention:
Unit interval as range of membership grades is arbitrary but easy to use.
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Examples for Fuzzy Sets
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Examples for Fuzzy Sets
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Example – Velocity of Rotating Hard Disk

0

0.5

1.0

v

µ

a b x c d

Fuzzy set µ characterizing the normal velocity of rotating hard disk.

Let v be the velocity of rotating hard disk in revolutions per minute. 
Modelling of expert’s knowledge:
“It’s impossible that v drops under a or exceeds d .
“It’s highly certain that any value between [b, c] canoccur.”
„Otherwise I defined my subjective point of view , I also use my data“
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Vertical Representation

m,dµ (x) =

So far, fuzzy sets were described by
their characteristic/membership function and
assigning degree of membership µ(x) to each element x ∈ X.

That is the vertical representation of the corresponding fuzzy set,
e.g. linguistic expression like “about m”

.
d

. m−x . . ,1− .

0,
if m − d ≤ x ≤ m + d
otherwise,

or “approximately between b and c”
�

 b−a x−a,
 1,

 c−d

µa,b,c,d(x) = x−d
 ,
 0,

if a ≤ x < b
if b ≤ x ≤ c if
c < x ≤ d
if x < a or x > d .
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Level Sets (cuts)  for a Fuzzy set



An Example

0

1
µ

α

a m b IR

[µ]α =

[µα]
Let µ be triangular function on IR as shownabove.

α-cut of µ can be constructed by
1. drawing horizontal line parallel to x-axis through point (0,α),
2. projecting this section onto x-axis.

.
[a +α(m − a), b − α(b − m)], if 0 <  α ≤1,
IR, if α =0.
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Properties of α-cuts I

Any fuzzy set can be described by specifying its α-cuts.

That is the α-cuts are important for application of fuzzy sets.

Theorem
Let µ ∈ F(X ), α ∈ [0, 1] and β ∈ [0, 1].

(a) [µ]0 = X,

(b) α < β =⇒[µ]α ⊇ [µ]β,

T
α :α< β

(c) [µ]α =[µ]β.

Part1 21 / 104



Characteristic function
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Properties of α-cuts II
Theorem (Representation Theorem)
Let µ ∈ F(X ).Then

, ,

[µ]αwhere χ (x) =

µ(x) = sup min(α,χ[µ]α (x))
α∈[0,1]

.
1, if x ∈ [µ]α

0, otherwise.

So, fuzzy set can be obtained as upper envelope of its α-cuts.  
Simply draw α-cuts parallel to horizontal axis in height of α.
In applications it is recommended to select finite subset L ⊆ [0, 1] of  
relevant degrees of membership.
They must be semantically distinguishable.
That is, fix level sets of fuzzy sets to characterize only for these levels.
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“Approximately 5 or greater than or equal to 7”
An Exemplary Horizontal View
Suppose that X = [0,15].
An expert chooses L = {0,0.25,0.5,0.75,1} and α-cuts:

• A0 = [0,15],
• A0.25 = [3,15],
• A0.5 = [4, 6]∪ [7, 15],
• A0.75 = [4.5,5.5]∪ [7,15],
• A1 ={5} ∪ [7, 15].

1.00
0.75
0.50
0.25

0

bb b b

b b b

b b b      b 

b

b b

0 5 10 15
The family (Aα)α∈L of sets induces upper shown fuzzyset.

Part1 25 / 104



“Approximately 5 or greater than or equal to 7”
An Exemplary Vertical View

0 5 10 15

µA is obtained as upper envelope of the family A ofsets.

The difference between horizontal and vertical view is obvious:  

1.00
0.75
0.50
0.25

0

The horizontal representation is easier to process in computers.

Also, restricting the domain of x-axis to a discrete set is usually done.
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Horizontal Representation in the Computer

4.5 5.5

4 6

5 5 7 15 nil

7 15 nil

7 15 nil

nil 3 15 nil

Fuzzy sets are usually stored as chain of linear lists.  

For each α-level, α ƒ= 0.

A finite union of closed intervals is stored by their bounds.  

This data structure is appropriate for arithmetic operators.
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Convex Fuzzy Sets

0

1

IR

α

0

1

IR

α

A fuzzy set µ ∈ F(IR) is convex if and only if

µ(λx1 + (1 − λ)x2) ≥ min{µ(x1), µ(x2)}

for all x1, x2 ∈ IR and all λ ∈ [0, 1].
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Fuzzy Logic



The Traditional or Aristotlelian Logic
What is logic about? Different schools speak different languages!

There are raditional, linguistic,  
psychological, epistemological and  
mathematical schools.

Traditional logic has been founded by  
Aristotle (384-322 B.C.).

Aristotlelian logic can be seen as  
formal approach to human reasoning.

It’s still used today in Artificial  
Intelligence for knowledge  
representation and reasoning about  
knowledge. Detail of “The School of Athens” by R. Sanzio (1509)  showing 

Plato (left) and his student Aristotle (right).
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Classical Logics is intuitive

Logics study methods/principles of reasoning.

The most famous logic is the propositional calculus. 

A proposition can be (only) true or false, the calculus uses connectives
such as „and“ (∧), „or“(∨), „not“(¬), „imply“(→).

The calculus uses inference rules (like modus ponens):

Premise 1: If it's raining then it's cloudy.
Premise 2: It's raining.
Conclusion: It's cloudy.
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But formalization of Propositional Logic is tricky

Formal Language (Symbols, Operators, Well-formed formulas, formation
rules,..)

Truth Functions and Truth Tables

Tautologies (true for all possible truth-value assignments)

Deduction System (modus ponens, resolution, modus tollens,…)

Desirable Meta Theoretic Properties (Completeness, Soundness, 
Consistency, Truth Functionality)

Many-valued logics consider more than two truth-values, in the simplest

form the values true, false, and indeterminate
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Boolean Algebra

The propositional logic based on finite set of logic variables is  
isomorphic to finite set theory.

Both of these systems are isomorphic to a finite Boolean algebra.

Definition
A Boolean algebra on a set B is defined as quadruple B = (B, +, ·, )
where B has at least two elements (bounds) 0 and 1, + and · are  binary 
operators on B, and is a unary operator on B for which the  
following properties hold.
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Properties of Boolean Algebras I

a+a = a
a +b = b +a

(a+b)+c = a+(b +c)
a+(a· b) = a

a · a = a  a
· b = b · a

(a· b) · c = a· (b · c)
a· (a +b) = a

(B1) Idempotence  
(B2) Commutativity  
(B3) Associativity  
(B4) Absorption  (B5)
Distributivity a · (b +c) = (a · b)+(a · c) a +(b · c) = (a+b) · (a+c)

a· 1 = a, a · 0 = 0
a· a = 0

a+0 = a, a +1 = 1
a+a = 1

a = a

(B6) UniversalBounds  
(B7) Complementary  
(B8) Involution
(B9) Dualization a +b = a · b a · b = a+b

Properties (B1)-(B4) are common to every lattice,

i.e. a Boolean algebra is a distributive (B5), bounded (B6), and  
complemented (B7)-(B9) lattice,

i.e. every Boolean algebra can be characterized by a partial ordering on  a 
set, i.e. a ≤ b if a · b = a or, alternatively, if a+b = b.

Part1 39 / 104



Set Theory, Boolean Algebra, PropositionalLogic
Every theorem in one theory has a counterpart in each other theory.  

Counterparts can be obtained applying the following substitutions:

Meaning Set Theory Boolean Algebra Prop. Logic

2Xvalues B L(V)
“meet”/“and” ∩ · ∧
“join”/“or” ∪ + ∨
“complement”/“not”
identity element

c

X 1
¬
1

zero element ∅ 0 0
partial order ⊆ ≤ →

power set 2X, set of logic variables V, set of all combinations L(V) of  
truth values of V
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The Basic Principle of Classical Logic

The Principle of Bivalence:
“Every proposition is either true or false.”

It has been formally developed by Tarski.

Łukasiewicz suggested to replace it by
The Principle of Valence:
“Every proposition has a truth value.”

Propositions can have intermediate truth value,  
expressed by a number from the unit interval [0, 1].

Alfred Tarski(1902-1983)

Jan Łukasiewicz(1878-1956)
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Three-valued Logics

A 2-valued logic can be extended to a 3-valued logic in several ways,

i.e. different three-valued logics have been well established:

truth, falsity, indeterminacy are denoted by 1, 0, and 1/2, resp.  

The negation ¬a is defined as 1 − a, i.e. ¬1 = 0, ¬0 = 1and
¬1/2 = 1/2.

Other primitives, e.g. ∧, ∨, →, ↔, differ from logic tologic.

Five well-known three-valued logics (named after their originators) are  
defined in the following.
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Primitives of Some Three-valued Logics

a b
Łukasiewicz
∧ ∨ → ↔ ∧

Bochvar
∨ → ↔ ∧

Kleene
∨ → ↔ ∧

Heyting
∨ → ↔

Reichenbach
∧ ∨ → ↔

0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1
2 0 1

2 1 1
2

1
2

1
2

1
2

1
2 0 1

2 1 1
2 0 1

2 1 0 0 1
2 1 1

2
0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1
2 0 0 1

2
1
2

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2

1
2 0 1

2 0 0 0 1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2 1 1 1

2
1
2 1 1

1
2

1 1
2

1 1 1
2

1
2

1
2

1
2

1
2

1
2

1 1 1
2

1
2

1 1 1
2

1
2

1 1 1
2

1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

1 1
2

1
2 1 1

2
1
2

1
2

1
2

1
2

1
2

1
2 1 1

2
1
2

1
2 1 1

2
1
2

1
2 1 1

2
1
2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

All of them fully conform the usual definitions for a, b ∈ {0,1}.  
They differ from each other only in their treatment of 1/2.
Question: Do they satisfy the law of contradiction (a ∧ ¬a = 0) and  the 
law of excluded middle (a ∨ ¬a =1)?
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n-valued Logics

After the three-valued logics: generalizations to n-valued logics for  
arbitrary number of truth values n ≥ 2.

In the 1930s, various n-valued logics were developed.

Usually truth values are assigned by rational number in [0, 1].  

Key idea: uniformly divide [0, 1] into n truth values.

Definition
The set Tn of truth values of an n-valued logic is definedas

.
Tn = 0 = n − ,

1 n − 1 n
0 1 2 n − 2 n − 1 Σ

, , . . . , , = 1 .
− 1 n − 1 n − 1

These values can be interpreted as degree of truth.
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Primitives in n-valued Logics
Łukasiewicz proposed first series of n-valued logics for n ≥ 2.  In 

the early 1930s, he simply generalized his three-valued logic.  It 

uses truth values in Tn and defines primitives asfollows:

¬a = 1 −a
a∧ b = min(a,b)  a
a  ∨ b = max(a,b)

a → b = min(1, 1 + b− a) 

a ↔ b = 1 − |a − b|

The n-valued logic of Łukasiewicz is denoted by Ln.

The sequence (L2, L3, . . . ,L∞) contains the classical two-valued logic
L2 and an infinite-valued logic L∞ (rational countable valuesT∞).

The infinite-valued logic L1 (standard Łukasiewicz logic) is the logic
with all real numbers in [0, 1] (1 = cardinality of continuum).
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In 1965, Zadeh proposed a multivalued logic, called
Fuzzy Logic, with values in [0, 1]:

¬a = 1 −a,
a∧ b = min(a,b),
a∨ b = max(a,b).
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Set Operators...

...are defined by using traditional logics operator

Let X be universe of discourse (universalset):

A ∩ B = {x ∈ X | x ∈ A ∧ x ∈ B}
A ∪ B = {x ∈ X | x ∈ A ∨ x ∈ B}

Ac = {x ∈ X | x ∈/A} = {x ∈ X | ¬(x∈ A)}

A ⊆ B if and only if (x ∈ A) → (x ∈ B) for all x ∈ X

Operations on fuzzy set operations use multivalue logic connectives

R. Kruse, J. Schulze FS – Fuzzy Sets and Fuzzy Logic Part1 34 / 104
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Standard Fuzzy Set Operators
intersection (“AND”),

union (“OR”),

complement (“NOT”).

(µ ∧ µ′)(x) := min{µ(x),µ′(x)}

(µ ∨ µ′)(x) := max{µ(x),µ′(x)}

¬ µ(x) := 1− µ(x)

µ is subset of µ′ if and only if µ ≤ µ′.

Theorem
(F(X),∧,∨,¬) is a complete distributive lattice but no boolean algebra.
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Fuzzy Set Operators
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In set theory, operators are defined by propositional logics operator

Let X be universal set (often called universe of discourse). Then we define

A ∩ B = {x ∈ X | x ∈ A ∧ x ∈ B}
A ∪ B = {x ∈ X | x ∈ A ∨ x ∈ B}

Ac = {x ∈ X | x ∈/A} = {x ∈ X | ¬ (x∈ A)}

A ⊆ B if and only if (x ∈ A) → (x ∈ B) for all x ∈ X

Fuzzy Set Operators can be defined by using multivalues logics operators
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Standard Fuzzy Set Operators

intersection (“AND”),
union (“OR”),

complement (“NOT”).

(µ ∧ µ′)(x) :=  min{µ(x),µ′(x)}

(µ ∨ µ′)(x) :=max{µ(x),µ′(x)}

¬µ(x):= 1− µ(x)

µ is subset of µ′ if and only if µ ≤ µ′.

Theorem
(F(X),∧,∨,¬) is a complete distributive lattice, but no Boolean algebra.
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Fuzzy Set Complement



Fuzzy Complement/Fuzzy Negation

Definition
Let X be a given set and µ ∈ F(X ). Then the complement can be  
defined pointwise by µ̄ (x ) := ∼ (µ(x )) where ∼ : [0, 1] → [0, 1]  satisfies 
the conditions

∼(0) = 1, ∼(1) = 0

and

for x , y ∈ [0, 1], x ≤ y =⇒∼ x ≥ ∼ y (∼ is non-increasing).

Abbreviation: ∼ x := ∼(x)
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Strict and Strong Negations

Additional properties may be required
• x , y ∈ [0, 1], x < y =⇒∼ x > ∼ y (∼ is strictly decreasing)
• ∼ is continuous
• ∼∼ x = x for all x ∈ [0, 1] (∼ is involutive)

According to conditions, two subclasses of negations are defined:

Definition
A negation is called strict if it is also strictly decreasing and
continuous. A strict negation is said to be strong if it is involutive,too.

∼x = 1− x2, for instance, is strict, not strong, thus not involutive
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Families of Negations

standard negation:

threshold negation: ∼θ(x) =

∼ x = 1− x
.

1 if x ≤ θ
0 otherwise

Cosine negation:
2

∼ x = 1 (1+cos(πx))

Sugeno negation: λ 1+λx
∼ (x ) =  1 − x , λ >−1

Yager negation: λ 1
∼λ(x) = (1− x )λ

standard cosine Sugeno Yager
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Fuzzy Set Intersection and Union



Classical Intersection and Union

0
1

0 0
0 1

Classical set intersection represents logical conjunction.  

Classical set union represents logical disjunction.

Generalization from {0, 1} to [0, 1] as follows:

x ∧ y 0 1 x ∨ y 0 1
0
1

0 1
1 1
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Fuzzy Set Intersection and Union

Let A,B be fuzzy subsets of X, i.e. A,B ∈ F(X).

Their intersection and union are often defined pointwise using:

(A∩ B)(x) =⊤(A(x),B(x))

(A∪ B)(x) =⊥(A(x),B(x))

where ⊤ : [0, 1]2 → [0,1]

where ⊥ : [0, 1]2 → [0,1].
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Triangular Norms and Conorms

⊤ is a triangular norm (t-norm) ⇐⇒⊤ satisfies conditions T1-T4

⊥ is a triangular conorm (t-conorm) ⇐⇒⊥ satisfies C1-C4

Identity Law
T1: ⊤(x, 1) = x C1: ⊥(x, 0) = x

Commutativity
T2: ⊤(x,y) =⊤(y,x) C2: ⊥(x,y) =⊥(y,x)
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Associativity
T3: ⊤(x,⊤(y,z)) =⊤(⊤(x,y),z) C3: ⊥(x,⊥(y,z)) =⊥(⊥(x,y),z)

Monotonicity
T4: y ≤ z implies ⊤(x , y ) ≤ ⊤(x , z )   C4: y ≤ z implies⊥(x , y ) ≤ ⊥(x , z ).
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Triangular Norms and Conorms II

Both identity law and monotonicity respectively imply
∀x ∈ [0,1] :⊤(0,x) = 0,
∀x ∈ [0,1] :⊥(1,x) = 1,

For any t-norm ⊤ :⊤(x,y) ≤ min(x,y),  for any t-conorm ⊥ :⊥(x,y) ≥ max(x,y).

x = 1 ⇒ T(0, 1) = 0 and
x ≤ 1⇒ T(x,0) ≤ T(1,0) = T(0,1) = 0
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De Morgan Triplet I

For every ⊤ and strong negation ∼, one can define t-conorm ⊥ by

⊥(x,y) =∼⊤(∼ x,∼ y), x,y ∈ [0,1].

Additionally, in this case⊤(x,y) =∼⊥(∼x,∼ y), x,y ∈ [0,1].
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De Morgan Triplet II

Definition

The triplet (⊤, ⊥, ∼) is called De Morgan triplet if and onlyif
⊤ is t-norm, ⊥ is t-conorm, ∼ is strong negation,

⊤,⊥ and∼ satisfy⊥(x,y) =∼⊤(∼x,∼ y).

In the following, some important De Morgan triplets will be shown,  

only the most frequently used and important ones.

In all cases, the standard negation ∼ x = 1 − x isconsidered.
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The Minimum and Maximum I

⊤min(x,y) = min(x,y), ⊥max(x,y) = max(x,y)

Minimum is the greatest t-norm and max is the weakest t-conorm.

⊤(x,y) ≤ min(x,y) and⊥(x,y) ≥ max(x,y) for any ⊤ and⊥

0.4 0.6 0.8 1

00 0.20.2

0.6
0.4

0.8
1

0

1

⊤min

0.4 0.6 0.8 1

00 0.20.2

0.6
0.4

0.8
1

0

1

⊥max
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The Special Role of Minimum and Maximum I

⊤min and ⊥max play key role for intersection and union, resp. In

a practical sense, they are very simple.

Apart from the identity law, commutativity, associativity and
monotonicity, they also satisfy the following properties for all x ,
y,z ∈ [0,1]:

Distributivity
⊥max(x,⊤min(y,z)) =⊤min(⊥max(x,y),⊥max(x,z)),
⊤min(x,⊥max(y,z)) =⊥max(⊤min(x,y),⊤min(x,z))

Continuity

⊤min and ⊥max are continuous.
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The Special Role of Minimum and Maximum II

Strict monotonicity on the diagonal

x < y implies⊤min(x,x) < ⊤min(y,y) and ⊥max(x,x) < ⊥max(y,y).

Idempotency

⊤min(x,x) = x, ⊥max(x,x) = x

Absorption

⊤min(x,⊥max(x,y)) = x, ⊥max(x,⊤min(x,y)) = x

Non-compensation
x < y < z imply ⊤min(x,z) ƒ=⊤min(y,y) and

⊥max(x,z) =ƒ ⊥max(y,y).
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The Minimum and Maximum II

⊤min and ⊥max can be easily processed numerically and visually,

e.g. linguistic values young and approx. 20 described by µy , µ20.

⊤min(µy , µ20) is shownbelow.

0

1 µy µ20

µy ∩ µ20

0 10 20 30 40 50
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The Product and Probabilistic Sum

⊤prod(x,y) = x · y, ⊥sum(x,y) = x +y − x · y
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The Łukasiewicz t-norm and t-conorm

⊤Łuka(x,y) = max{0, x +y − 1}, ⊥Łuka(x,y) = min{1, x +y}

⊤Łuka, ⊥Łuka are also called bold intersection and boundedsum.
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The Drastic Product and Sum

⊤−1(x,y) =
.

min(x,y)  
0

if max(x,y) = 1  
otherwise

⊥−1(x,y) =
.

max(x,y)  
1

if min(x,y) = 0  
otherwise

⊤−1 is the weakest t-norm, ⊥−1 is the strongest t-conorm.

⊤−1 ≤ ⊤ ≤ ⊤min, ⊥max ≤ ⊥ ≤ ⊥−1 for any ⊤ and ⊥
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Examples of Fuzzy Intersections

t-norm⊤min t-norm⊤prod

t-norm ⊤Łuka t-norm⊤−1

Note that all fuzzy intersections are contained within upper left graph  
and lower right one.
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Examples of Fuzzy Unions

t-conorm ⊥max t-conorm⊥sum

t-conorm ⊥Łuka t-conorm ⊥−1

Note that all fuzzy unions are contained within upper left graph and
lower right one.
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Łukasiewicz Logics

Łukasiewicz proposed a series of n-valued logics Ln with truth degrees in Tn

¬a = 1 −a complement
a∧ b = min(a,b) weak conjunction
a  .  b      =   m a x  ( 0 , a  +  b  - 1)               s tro n g  c o n jun c tio n
a  ∨ b = max(a,b) weak disjunction
a x b = min(1,a+b)            strong disjunction

a → b = min(1, 1 + b− a) implication

a ↔ b = 1− |a − b| biimplication

The so called standard Łukasiewicz logic has truth degrees in [0, 1] 

and uses the following connectives: 
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Fuzzy Set Operators II
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Continuous Archimedian t-norms and t-conorms

Often it is possible to representation functions with several inputs by a 
function with only one input , e.g.

K(x,y) = f (−1)(f (x) + f (y))

For a subclass of t-norms this is possible. The trick makes calculations simpler.

A t-norm ⊤ is called
(a) continuous if ⊤ is continuous
(b) Archimedian if ⊤ is continuous and ⊤(x,x) < x for all x ∈]0, 1[.

A t-conorm ⊥ is called
(a) continuous if ⊥ is continuous,

(b) Archimedian if ⊥ is continuous and ⊥(x,x) > x for all x ∈]0,1[.
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The concept of a pseudoinverse

f (−1)(y)=
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The concept of a pseudoinverse

f (−1)(y)=
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Continuous Archimedean t-norms
Theorem
A t-norm ⊤ is continuous and Archimedean if and only if thereexists
a strictly decreasing and continuous function f : [0, 1] → [0, ∞] with  f 
(1) = 0 suchthat

⊤(x,y) = f (−1)(f (x) + f (y)) (1)

where
(−1)f (x) =

.
f−1(x) if x ≤ f (0)
0 otherwise

is the pseudoinverse of f . Moreover, this representation is unique up  to 
a positive multiplicative constant.

⊤ is generated by f if ⊤ has representation(1).

f is called additive generator of ⊤.
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Additive Generators of t-norms – Examples

Find an additive generator f of ⊤Łuka(x,y) = max{x +y − 1, 0}.

for instance fŁuka(x) = 1− x

Łukathen, f (−1) (x) = max{1− x, 0}

ŁukaŁuka Łuka Łukathus ⊤ (x,y) = f (−1 )(f (x) + f (y))

Find an additive generator f of ⊤prod(x,y) = x · y.

to be discussed in the exercise

hint: use of logarithmic and exponential function
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Continuous Archimedean t-conorms
Theorem
A t-conorm ⊥ is continuous and Archimedean if and only if there
exists a strictly increasing and continuous function g : [0, 1] → [0,∞]
with g(0) = 0 such that

⊥(x,y) = g(−1)(g(x)+g(y)) (2)

where
(−1)g (x) =

.
g−1(x) if x ≤ g(1)
1 otherwise

is the pseudoinverse of g. Moreover, this representation is unique up  to 
a positive multiplicative constant.

⊥ is generated by g if ⊥ has representation (2).

g is called additive generator of⊥.
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Additive Generators of t-conorms – Two  
Examples

Find an additive generator g of ⊥Łuka(x,y) = min{x +y, 1}.

for instance gŁuka(x) = x

Łukathen, g(−1)(x) = min{x, 1}

ŁukaŁuka Łuka Łukathus ⊥ (x,y) = g(−1)(g (x) +g (y))

Find an additive generator g of ⊥sum(x,y) = x +y − x · y.

to be discussed in the exercise

hint: use of logarithmic and exponential function

Now, let us examine some typical families of operations.
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Sugeno-Weber Family I

For λ > 1 and x,y ∈ [0,1], define

⊤λ(x,y) = max
. x +y − 1+λxy

1+λ

Σ
, 0 ,

⊥λ(x,y) = min{x +y +λxy, 1} .

λ = 0 leads to ⊤Łuka and ⊥Łuka, resp.  λ → 

∞ results in ⊤prod and ⊥sum, resp.  λ → −1 

creates ⊤−1 and ⊥−1,resp.
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Sugeno-Weber Family II

Additive generators fλ of ⊤λ are

1− x

fλ(x) =1 − log(1+λx)
log(1+λ)

if λ = 0  
otherwise
.

{⊤λ}λ>−1 are increasing functions of parameter λ.  

Additive generators of ⊥λ are gλ(x) = 1− fλ(x).
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Fuzzy Sets Inclusion



Subset Property
For Classical Sets x ∈A ⇒ x ∈B, 

For Fuzzy Sets : x ∈µ ⇒ x ∈µ ′
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Definition of a Fuzzy Implication

1. One way of defining I is to use the property that in classical logic the
propositions a ⇒ b and ¬a∨ b have the same truth values for all truth
assignments to a and b.
If we model the disjunction and negation as t-conorm and fuzzy 
complement, resp., then for all a, b ∈ [0,1] the following defininion
of a fuzzy implication seems reasonable:

I(a, b) =⊥(∼a,b).

2. Another way is to use the concept of a residuum in classical logic:  a ⇒ b and
max{x ∈ {0,1} | a∧ x ≤ b} ha v e  t h e  same  truth val ues forall truthassignmentsfor
a, and  b.  If in a generalized logic the conjunction is modelled by a t-norm, 
then a reasonable generalization could be:

I(a, b) = sup{x ∈ [0,1] | ⊤(a,x) ≤ b} .
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Definition of a Fuzzy Implication
3.  Another proposal is to use the fact that, in classical logic, the

propositions a ⇒ b and ¬a∨ (a∧ b) have the same truth for all 
truth assignments. 

A possible extension to many valued logics is therefore
I(a, b) =⊥(∼a,⊤(a,b)),

where (⊤, ⊥,∼) should be a De Morgantriplet.

So again, the classical definition of an implication is unique, whereas there is

a „zoo“ of fuzzy implications.

Typical question for applications: What to use when and why? 
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S-Implications
Implications based on I(a, b) =⊥(∼a, b) are called S-implications.  

Symbol S is often used to denote t-conorms.

Four well-known S-implications are based on ∼ a = 1− a:

Name I(a, b) ⊥(a,b)

Kleene-Dienes Imax(a,b) = max(1− a,b) max(a,b)

Reichenbach Isum(a,b) = 1− a +ab a +b − ab

Łukasiewicz IŁ(a,b) = min(1, 1 − a +b) min(1, a + b)

b, if a =1


b, if a =0

largest I−1(a, b) = 1 − a, if b =0


a, if b = 0
 1, 1, otherwisotherwis

e
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R-Implications

Imin(a,b) = sup{x | min(a,x) ≤ b} =

I(a, b) = sup{x ∈ [0,1] | ⊤(a,x) ≤ b} leads to R-implications.  

Symbol R represents close connection to residuated semigroup.  

Three well-known R-implications are based on ∼ a = 1− a:
• Standard fuzzy intersection leads to Gödel implication

.
1, if a ≤ b  
b, if a > b.

• Product leads to Goguen implication

Iprod(a, b) = sup{x | ax ≤ b} =
.

1, if a ≤ b  
b/a, if a > b.

• Łukasiewicz t-norm leads to Łukasiewicz implication

IŁ(a, b) = sup{x | max(0,a +x − 1) ≤ b} = min(1, 1− a +b).
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QL-Implications
Implications based on I(a, b) =⊥(∼a,⊤(a,b)) are called
QL-implications (QL from quantum logic).

Four well-known QL-implications are based on ∼ a = 1 −a:
• Standard min and max lead to Zadeh implication

IZ(a,b) = max[1− a,min(a,b)].

• The algebraic product and sum lead to

Ip(a,b) = 1− a +a2b.

• Using ⊤Ł and ⊥Ł leads to Kleene-Dienes implicationagain.
• Using ⊤−1 and ⊥−1 leads to


 b,

Iq(a, b) = 1 −a,
 1,

if a =1
if a ƒ= 1,b ƒ=  1if 
a ƒ=1, b =  1.

Part1 98 / 104



Axioms

All I come from generalizations of the classical implication.
They collapse to the classical implication when truth values are 0 or 1.  

Generalizing classical properties leads to following axioms:

1) a ≤ b implies I(a, x) ≥ I(b, x)
2)a ≤ b implies I(x,a) ≤ I(x,b)  
3) I(0, a) = 1
4) I(1, b) =b
5) I(a, a) =1
6) I(a, I(b, c)) = I(b, I(a, c))
7) I(a, b) = 1 if and only if a ≤b

(monotonicity in 1st argument) 
(monotonicity in 2nd argument)

(dominance of falsity) 
(neutrality of truth)

(identity)
(exchange property)
(boundary condition)

8) I(a, b) = I(∼ b,∼a) for fuzzy complement∼
9) I is a continuous function

(contraposition)  
(continuity)
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Generator Function

I that satisfy all listed axioms are characterized by this theorem:

Theorem 2A function I : [0, 1] → [0, 1] satisfies Axioms 1–9 of fuzzy implications  for a 
particular fuzzy complement ∼ if and only if there exists a strict  
increasing continuous function f : [0, 1] → [0, ∞) such that f (0) =0,

I(a, b) = f (−1)(f (1)− f (a)+ f (b))

for all a, b ∈ [0, 1],and

∼a = f−1(f (1)− f (a))

for all a ∈ [0,1].
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Example
Consider fλ(a) = ln(1+λa) with a∈ [0,1] and λ > 0.  Its 

pseudo-inverse is

λf 
(−1)(a)=

. ea−1,λ
1,

if 0 ≤ a ≤ ln(1+λ)  
otherwise.

The fuzzy complement generated by f for all a ∈ [0, 1]is

1− a
nλ(a) = 1+λa.

The resulting fuzzy implication for all a, b ∈ [0, 1] isthus
.

Iλ(a, b) = min 1,
1+λa

1− a +b +λbΣ
.

If λ ∈ (−1, 0), then Iλ is called pseudo-Łukasiewicz implication.
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