1. Exercise Sheet

Exercise 1 Expected Payoffs

Consider a game with the following payoff matrix:

$$
\left.A=\begin{array}{c}
\\
C \\
D
\end{array} \begin{array}{cc}
C & D \\
{\left[\begin{array}{l}
0,0
\end{array}\right.} & 1,1 \\
0,0 & 1,1
\end{array}\right]
$$

a) Compute the expected payoff for player 1 playing cooperate (C), when it is already known that player 2 plays a mixed strategy of $x=(1 / 2,1 / 2)$.
b) Compute the expected payoff of player 1 , when he plays a mixed strategy of $x_{1}=(1 / 2,1 / 2)$ and player 2 plays a mixed strategy of $x_{2}=(1 / 2,1 / 2)$.
c) Assume that both players currently play a mixed strategy of $x=(1 / 2,1 / 2)$. What kind of strategy can player 1 play to increase his payoff? What kind of strategy can player 2 play to increase his payoff?

Exercise 2 Nash Equilibria

Consider a 2-Player Prisoner's Dilemma game with the following payoff matrix.

$$
\left.A=\begin{array}{c}
\\
C \\
D
\end{array} \begin{array}{cc}
C & D \\
{[3,3} & 0,5 \\
5,0 & 1,1
\end{array}\right]
$$

What strategy profile is a Nash-Equilibrium?

Exercise 3 Nash Equilibria

Roger and Colleen play a game. Each one has a coin. They will both show a side of their coin simultaneously. If both show heads, no money will be exchanged. If Roger shows heads and Colleen shows tails then Colleen will give Roger 1 Dollar. If Roger shows tails and Colleen shows heads, then Roger will pay Colleen 1 Dollar. If both show tails, then they both get 2 Dollar.
a) Write the payoff matrix (for both players). Note: You can write in one matrix or in two matrices.
b) What is the best response of Colleen to Roger, when he plays/shows tails?
c) What is the Nash-equilibrium for this payoff matrix?

Exercise 4 Nash Equilibria in Mixed Strategies

Consider the game Rock-Paper-Scissors-Lizard-Spock. The rules are defined as:

- Scissors cuts Paper
- Paper covers Rock
- Rock crushes Lizard
- Lizard poisons Spock
- Spock smashes Scissors
- Scissors decapitates Lizard
- Lizard eats Paper
- Paper disproves Spock
- Spock vaporizes Rock
- Rock crushes Scissors

a) Write the payoff matrix for the 2-player version of the game.
b) Show that there cannot be a Nash-Equilibrium with pure strategies.
c) Proof that the Nash-Equilibrium is a mixed strategy with the probability distribution $x=(1 / 5,1 / 5,1 / 5,1 / 5,1 / 5)$.
- Hint: read up on the proof for the base-game Rock-Paper-Scissors and adapt it to the 5 strategy variant: https://oyc.yale.edu/sites/default/files/mixed_ strategies_handout_0_0.pdf

Exercise 5 Replicator Equations and Fixed Points

Consider the Stag-Hunt game with the following payoff matrix:

C	C
D	D
D	2,2

a) Use replicator equations to calculate the fixed point(s), for the number of cooperators.
b) Show to which fixed point the population converges if the initial frequency of cooperators is 75%.
c) Show which fixed point the population converges to for any start-frequency of cooperators.

