Nonstandard Concepts for Handling Imprecise Data and Imprecise Probabilities

Problems with Probability Theory

Representation of Ignorance

We are given a die with faces $1, \ldots, 6$ What is the certainty of showing up face i?

- Conduct a statistical survey (roll the die 10000 times) and estimate the relative frequency: $P(\{i\}) = \frac{1}{6}$
- Use subjective probabilities (which is often the normal case): We do not know anything (especially and explicitly we do not have any reason to assign unequal probabilities), so the most plausible distribution is a uniform one.

Problem: Uniform distribution because of ignorance or extensive statistical tests

Experts analyze aircraft shapes: 3 aircraft types A, B, C"It is type A or B with 90% certainty. About C, I don't have any clue and I do not want to commit myself. No preferences for A or B."

Problem: Ignorance hard to handle with Bayesian theory

" $A \subseteq X$ being an imprecise date" means: the true value x_0 lies in A but there are no preferences on A.

- Ω set of possible elementary events
- $\Theta = \{\xi\} \qquad \text{set of observers}$
- $\lambda(\xi)$ importance of observer ξ

Some elementary event from Ω occurs and every observer $\xi \in O$ shall announce which elementary events she personally considers possible. This set is denoted by $\Gamma(\xi) \subseteq \Omega$. $\Gamma(\xi)$ is then an imprecise date.

$\lambda: 2^{\Theta} \to [0,1]$	probability measure
	(interpreted as importance measure)
$(\Theta, 2^{\Theta}, \lambda)$	probability space
$\Gamma: \Theta \to 2^{\Omega}$	set-valued mapping

Imprecise Data (2)

Let
$$A \subseteq \Omega$$
:
a) $\Gamma^*(A) \stackrel{\text{Def}}{=} \{\xi \in \Theta \mid \Gamma(\xi) \cap A \neq \emptyset\}$
b) $\Gamma_*(A) \stackrel{\text{Def}}{=} \{\xi \in \Theta \mid \Gamma(\xi) \neq \emptyset \text{ and } \Gamma(\xi) \subseteq A\}$

Remarks:

- a) If $\xi \in \Gamma^*(A)$, then it is *plausible* for ξ that the occurred elementary event lies in A.
- b) If $\xi \in \Gamma_*(A)$, then it is *certain* for ξ that the event lies in A.

c)
$$\{\xi \mid \Gamma(\xi) \neq \emptyset\} = \Gamma^*(\Omega) = \Gamma_*(\Omega)$$

Let $\lambda(\Gamma^*(\Omega)) > 0$. Then we call

$$P^*(A) = \frac{\lambda(\Gamma^*(A))}{\lambda(\Gamma^*(\Omega))}$$
 the upper, and

$$P_*(A) = \frac{\lambda(\Gamma_*(A))}{\lambda(\Gamma_*(\Omega))}$$

the lower

probability w.r.t. λ and Γ .

Example

$\Theta = \{a, b\}$ $\Omega = \{1, 2\}$ $\Gamma^*(\Omega) = \{a, b\}$ $\lambda(\Gamma^*(\Omega)) = \frac{4}{6}$	$\begin{array}{ccc} \lambda \colon a \mapsto \\ & b \mapsto \\ & c \mapsto \\ & d \mapsto \end{array}$	$\frac{1}{6}$ $\frac{2}{6}$	$\Gamma: a \mapsto \{1\}$ $b \mapsto \{2\}$ $c \mapsto \emptyset$ $d \mapsto \{2,3\}$		
A	$\Gamma^*(A)$	$\Gamma_*(A)$	$P^*(A)$	$P_*(A)$	
Ø	Ø	Ø	0	0	
{1}	$\{a\}$	$\{a\}$	$\frac{1}{4}$	$\frac{1}{4}$	
$\{2\}$	$\{b,d\}$	$\{b\}$	$\frac{3}{4}$	$\frac{1}{4}$	
{3}	$\{d\}$	Ø	$\frac{1}{2}$	0	
$\{1, 2\}$	$\{a, b, d\}$	$\{a,b\}$	1	$\frac{1}{2}$	
$\{1,3\}$	$\{a,d\}$	$\{a\}$	$\frac{3}{4}$	$\frac{\frac{1}{2}}{\frac{1}{4}}$	
$\{2,3\}$	$\{b,d\}$	$\{b,d\}$	$\frac{3}{4}$	$\frac{3}{4}$	
$\{1, 2, 3$	$\} \mid \{a, b, d\}$	$\{a, b, d\}$	1	1	

One can consider $P^*(A)$ and $P_*(A)$ as upper and lower probability bounds.

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Some properties of probability bounds:

a)
$$P^*: 2^{\Omega} \to [0, 1]$$

b) $0 \le P_* \le P^* \le 1$, $P_*(\emptyset) = P^*(\emptyset) = 0$, $P_*(\Omega) = P^*(\Omega) = 1$
c) $A \subseteq B \implies P^*(A) \le P^*(B)$ and $P_*(A) \le P_*(B)$
d) $A \cap B = \emptyset \implies P^*(A) + P^*(B) = P^*(A \cup B)$
e) $P_*(A \cup B) \ge P_*(A) + P_*(B) - P_*(A \cap B)$
f) $P^*(A \cup B) \le P^*(A) + P^*(B) - P^*(A \cap B)$
g) $P_*(A) = 1 - P^*(\Omega \setminus A)$

Imprecise Data (4)

One can prove the following generalized equation:

$$P_*(\bigcup_{i=1}^n A_i) \ge \sum_{\emptyset \neq I: I \subseteq \{1,...,n\}} (-1)^{|I|+1} \cdot P_*(\bigcap_{i \in I} A_i)$$

These set functions also play an important role in theoretical physics (capacities, Choquet, 1955). Shafer did generalize these thoughts and developed a theory of belief functions. How is new knowledge incoporated?

Every observer announces the location of the ship in form of a subset of all possible ship locations. Given these set-valued mappings, we can derive upper and lower probabilities with the help of the observer importance measure. Let us assume the ship is certainly at sea.

How do the upper/lower probabilities change?

Example

a) Geometric Conditioning (observers that give partial or full wrong information are discarded)

$$P_*(A \mid B) = \frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq A \text{ and } \Gamma(\xi) \subseteq B\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})} = \frac{P_*(A \cap B)}{P_*(B)}$$
$$P^*(A \mid B) = \frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B \text{ and } \Gamma(\xi) \cap A \neq \emptyset\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})} = \frac{P^*(A \cup \overline{B}) - P^*(\overline{B})}{1 - P^*(\overline{B})}$$

Belief Revision (2)

b) Data Revision

(the observed data is modified such that they fit the certain information)

$$(P_*)_B(A) = \frac{P_*(A \cup \overline{B}) - P_*(\overline{B})}{1 - P_*(B)}$$
$$(P^*)_B(A) = \frac{P^*(A \cap B)}{P^*(B)}$$

These two concepts have different semantics. There are several more belief revision concepts.

Let $(\Omega, 2^{\Omega})$ be a space of events. Further be $(O_1, 2^{O_1}, \lambda_1)$ and $(O_2, 2^{O_2}, \lambda_2)$ spaces of independent observers.

We call $(O_1 \times O_2, \lambda_1 \cdot \lambda_2)$ the product space of observers and

$$\Gamma: O_1 \times O_2 \to 2^{\Omega}, \Gamma(x_1, x_2) = \Gamma_1(x_1) \cap \Gamma_2(x_2)$$

the combined observer function.

We obtain with

$$(P_L)_*(A) = \frac{(\lambda_1 \cdot \lambda_2)(\{(x_1, x_2) \mid \Gamma(x_1, x_2) \neq \emptyset \land \Gamma(x_1, x_2) \sqsubseteq A\})}{(\lambda_1 \cdot \lambda_2)(\{(x_1, x_2 \mid \Gamma(x_1, x_2) \neq \emptyset)\})}$$

the lower probability of A that respects both observations.

Example

$$\Omega = \{1, 2, 3\} \qquad \lambda_1 \colon \{a\} \mapsto \frac{1}{3} \qquad \lambda_2 \colon \{c\} \mapsto \frac{1}{2} \\ \{b\} \mapsto \frac{2}{3} \qquad \lambda_2 \colon \{d\} \mapsto \frac{1}{2} \\ \lambda_2 \colon \{d\} \mapsto \frac{1}{2} \\ \lambda_2 \colon \{d\} \mapsto \frac{1}{2} \\ \Gamma_1 \coloneqq a \mapsto \{1, 2\} \qquad \Gamma_2 \coloneqq c \mapsto \{1\} \\ O_2 = \{c, d\} \qquad b \mapsto \{2, 3\} \qquad d \mapsto \{2, 3\}$$

Combination:

$$O_1 \times O_2 = \{\overline{ac}, \overline{bc}, \overline{ad}, \overline{bd}\}$$

$$\begin{array}{lll} \lambda \colon \{\overline{ac}\} \mapsto \frac{1}{6} & \Gamma \colon \overline{ac} \mapsto \{1\} & \Gamma_*(\Omega) = \{(x_1, x_2) \mid \Gamma(x_1, x_2) \neq \emptyset\} \\ \{\overline{ad}\} \mapsto \frac{1}{6} & \overline{ad} \mapsto \{2\} & = \{\overline{ac}, \overline{ad}, \overline{bd}\} \\ \{\overline{bc}\} \mapsto \frac{2}{6} & \overline{bc} \mapsto \emptyset \\ \{\overline{bd}\} \mapsto \frac{2}{6} & \overline{bd} \mapsto \{2, 3\} & \lambda(\Gamma_*(\Omega)) = \frac{4}{6} \end{array}$$

Example (2)

A	$(P_*)_{\Gamma_1}(A)$	$(P_*)_{\Gamma_2}(A)$	$(P_*)_{\Gamma}(A)$
Ø	0	0	0
$\{1\}$	0	1/2	$^{1}/_{4}$
$\{2\}$	0	0	$^{1}/_{4}$
{3}	0	0	0
$\{1, 2\}$	1/3	1/2	$^{1}/_{2}$
$\{1, 3\}$	0	$^{1/2}$	$^{1}/_{4}$
$\{2,3\}$	$^{2}/_{3}$	$^{1/2}$	3/4
$\{1, 2, 3\}$	1	1	1

Belief Functions

Motivation

(Θ,Q)	Sensors
Ω	possible results, $\Gamma: \Theta \to 2^{\Omega}$
P_* :	$A \mapsto \sum_{B:B \subseteq A} m(B)$
P^* :	$A\mapsto \sum_{B:B\cap A\neq \emptyset}m(B)$
m :	$A \mapsto Q(\{\theta \in \Theta \mid \Gamma(\theta) = A\})$

Lower probability (Belief) Upper probability (Plausibility) mass distribution

Random sets: Dempster (1968)

Belief functions: Shafer (1974)

Development of a completely new uncertainty calculus as an alternative to Probability Theory

Belief Functions (2)

The function Bel : $2^{\Omega} \rightarrow [0, 1]$ is called *belief function*, if it possesses the following properties:

$$Bel(\emptyset) = 0$$

$$Bel(\Omega) = 1$$

$$\forall n \in \mathbb{N} \colon \forall A_1, \dots, A_n \in 2^{\Omega} :$$

$$Bel(A_1 \cup \dots \cup A_n) \ge \sum_{\emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|+1} \cdot Bel(\bigcap_{i \in I} A_i)$$

If Bel is a belief function then for $m : 2^{\Omega} \to \mathbb{R}$ with $m(A) = \sum_{B:B \subseteq A} (-1)^{|A \setminus B|} \cdot \text{Bel}(B)$ the following properties hold:

 $0 \le m(A) \le 1$ $m(\emptyset) = 0$ $\sum_{A \subseteq \Omega} m(A) = 1$

Belief Functions (3)

Let $|\Omega| < \infty$ and $f, g : 2^{\Omega} \to [0, 1]$.

$$\begin{aligned} \forall A \subseteq \Omega \colon (f(A) &= \sum_{B:B \subseteq A} g(B)) \\ \Leftrightarrow \\ \forall A \subseteq \Omega \colon (g(A) &= \sum_{B:B \subseteq A} (-1)^{|A \setminus B|} \cdot f(B)) \end{aligned}$$

 $(g \text{ is called the } M\"obius \ transformed \ of \ f)$

The mapping $m: 2^{\Omega} \to [0, 1]$ is called a *mass distribution*, if the following properties hold:

 $m(\emptyset) = 0$ $\sum_{A \subseteq \Omega} m(A) = 1$

Rudolf Kruse, Alexander Dockhorn

A	Ø	{1}	$\{2\}$	{ 3 }	$\{1, 2\}$	$\{2,3\}$	$\{1, 3\}$	$\{1, 2, 3\}$
m(A)	0	$^{1}/_{4}$	$^{1}/_{4}$	0	0	0	$^{2}/_{4}$	0
$\operatorname{Bel}(A)$	0	$^{1}/_{4}$	$^{1}/_{4}$	0	$^{2}/_{4}$	$^{1}/_{4}$	3/4	1

Belief $\widehat{=}$ lower probability with modified semantic

$$Bel(\{1,3\}) = m(\emptyset) + m(\{1\}) + m(\{3\}) + m(\{1,3\})$$
$$m(\{1,3\}) = Bel(\{1,3\}) - Bel(\{1\}) - Bel(\{3\})$$

m(A)measure of the trust/belief that exactly A occurs $Bel_m(A)$ measure of total belief that A occurs $Pl_m(A)$ measure of not being able to disprove A (plausibility)

$$\operatorname{Pl}_m(A) = \sum_{B:A \cap B \neq \emptyset} m(B) = 1 - \operatorname{Bel}(\overline{A})$$

Given one of m, Bel or Pl, the other two can be efficiently computed.

Knowledge Representation

 $m(\Omega) = 1, \ m(A) = 0 \text{ else}$ $m(\{\omega_0\}) = 1, \ m(A) = 0 \text{ else}$ $m(\{\omega_i\}) = p_i, \sum_{i=1}^n p_i = 1$

total ignorance value (ω_0) known Bayesian analysis

Further kinds of partial ignorance can be modeled.

Data Revision:

- Mass of A flows onto $A \cap B$.
- $\circ\,$ Masses are normalized to 1 (Ø-mass is destroyed)

Geometric Conditioning:

- $\circ\,$ Masses that do not lie completely inside B, flow off
- \circ Normalize

The mass flow can be described by specialization matrices

Combinations of Mass Distributions

Motivation: Combination of m_1 and m_2

 $m_1(A_i)\cdot m_2(B_j)$:

Mass attached to $A_i \cap B_j$, if only A_i or B_j are concerned Mass attached to A (after combination)

 $\sum_{i,j:A_i \cap B_j = A} m_1(A_i) \cdot m_2(B_j) :$

This consideration only leads to a mass distribution, if $\sum_{i,j:A_i \cap B_j = \emptyset} m_1(A_i) \cdot m_2(B_j) = 0.$

If this sum is > 0 normalization takes place.

Combination Rule

If m_1 and m_2 are mass distributions over Ω with belief functions Bel₁ and Bel₂ and does further hold $\sum_{i,j:A_i \cap B_j = \emptyset} m_1(A_i) \cdot m_2(B_j) < 1$, then the function $m: 2^{\Omega} \to [0, 1], m(\emptyset) = 0$

$$m(A) = \frac{\sum_{B,C:B\cap C=A} m_1(B) \cdot m_2(C)}{1 - \sum_{B,C:B\cap C=\emptyset} m_1(B) \cdot m_2(C)}$$

is a mass distribution. The belief function of m is denoted as $comb(Bel_1, Bel_2)$ or $Bel_1 \oplus Bel_2$. The above formula is called the combination rule.

Example

$$m_1(\{1,2\}) = \frac{1}{3} \qquad m_2(\{1\}) = \frac{1}{2} m_1(\{2,3\}) = \frac{2}{3} \qquad m_2(\{2,3\}) = \frac{1}{2}$$

$$m = m_1 \oplus m_2 :$$

$$\{1\} \mapsto \frac{1/6}{4/6} = 1/4$$

$$\{2\} \mapsto \frac{1/6}{4/6} = 1/4$$

$$\emptyset \mapsto 0$$

$$\{2,3\} \mapsto \frac{2/6}{4/6} = 1/2$$

Rudolf Kruse, Alexander Dockhorn

Combination Rule (2)

Remarks:

- a) The result from the combination rule and the analysis of random sets is identical
- b) There are more efficient ways of combination
- c) $\operatorname{Bel}_1 \oplus \operatorname{Bel}_2 = \operatorname{Bel}_2 \oplus \operatorname{Bel}_1$
- d) \oplus is associative
- e) $\operatorname{Bel}_1 \oplus \operatorname{Bel}_1 \neq \operatorname{Bel}_1$ (in general) f) $\operatorname{Bel}_2 : 2^{\Omega} \to [0, 1], m_2(B) = 1$ $\operatorname{Bel}_2(A) = \begin{cases} 1 & \text{if} B \subseteq A \\ 0 & \text{otherwise} \end{cases}$

The combination of Bel_1 and Bel_2 yields the data revision of m_1 with B.

The **pignistic transformation** Bet transforms a normalized mass function m into a probability measure $P_m = Bet(m)$ as follows:

$$P_m(A) = \sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \cap B|}{|B|}, \forall A \subseteq \Omega.$$

It can be shown that

 $bel(A) \le P_m(A) \le pl(A)$

Decision Making - Example

There are three possible murders

Let $m(\{John\}) = 0.48$, $m(\{John, Mary\}) = 0.12$, $m(\{Peter, John\}) = 0.32$, $m(\Omega) = 0.08$

We have:

$$P_m(\{John\}) = 0.48 + \frac{0.12}{2} + \frac{0.32}{2} + \frac{0.08}{3} \approx 0.73$$
$$P_m(\{Peter\}) = \frac{0.32}{2} + \frac{0.08}{3} \approx 0.19$$
$$P_m(\{Mary\}) = \frac{0.12}{2} + \frac{0.08}{3} \approx 0.09$$

The picmistic transformation gives a reasonable "Ranking"

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Imprecise Probabilities

Let x_0 be the true value but assume there is no information about P(A) to decide whether $x_0 \in A$. There are only probability boundaries.

Let \mathcal{L} be a set of probability measures. Then we call

$$(P_{\mathcal{L}})_* : 2^{\Omega} \to [0, 1], A \mapsto \inf\{P(A) \mid P \in \mathcal{L}\}$$
 the lower and
$$(P_{\mathcal{L}})^* : 2^{\Omega} \to [0, 1], A \mapsto \sup\{P(A) \mid P \in \mathcal{L}\}$$
 the upper

probability of A w.r.t. \mathcal{L} .

a)
$$(P_{\mathcal{L}})_*(\emptyset) = (P_{\mathcal{L}})^*(\emptyset) = 0; \quad (P_{\mathcal{L}})_*(\Omega) = (P_{\mathcal{L}})^*(\Omega) = 1$$

b) $0 \le (P_{\mathcal{L}})_*(A) \le (P_{\mathcal{L}})^*(A) \le 1$
c) $(P_{\mathcal{L}})^*(A) = 1 - (P_{\mathcal{L}})_*(\overline{A})$
d) $(P_{\mathcal{L}})_*(A) + (P_{\mathcal{L}})_*(B) \le (P_{\mathcal{L}})_*(A \cup B)$
e) $(P_{\mathcal{L}})_*(A \cap B) + (P_{\mathcal{L}})_*(A \cup B) \not\ge (P_{\mathcal{L}})_*(A) + (P_{\mathcal{L}})_*(B)$

Belief Revision

Let $B \subseteq \Omega$ and \mathcal{L} a class of probabilities. The we call

 $A \subseteq \Omega : (P_{\mathcal{L}})_*(A \mid B) = \inf\{P(A \mid B) \mid P \in \mathcal{L} \land P(B) > 0\} \quad \text{the lower and} \\ A \subseteq \Omega : (P_{\mathcal{L}})^*(A \mid B) = \sup\{P(A \mid B) \mid P \in \mathcal{L} \land P(B) > 0\} \quad \text{the upper}$

conditional probability of A given B.

A class \mathcal{L} of probability measures on $\Omega = \{\omega_1, \ldots, \omega_n\}$ is of type 1, iff there exist functions R_1 and R_2 from 2^{Ω} into [0, 1] with:

$$\mathcal{L} = \{ P \mid \forall A \subseteq \Omega : R_1(A) \le P(A) \le R_2(A) \}$$

Belief Revision (2)

Intuition: P is determined by $P(\{\omega_i\}), i = 1, ..., n$ which corresponds to a point in \mathbb{R}^n with coordinates $(P(\{\omega_1\}), \ldots, P(\{\omega_n\}))$.

If \mathcal{L} is type 1, it holds true that:

$$\mathcal{L} \Leftrightarrow \left\{ (r_1, \dots, r_n) \in \mathbb{R}^n \mid \exists P \colon \forall A \subseteq \Omega : \\ (P_{\mathcal{L}})_*(A) \le P(A) \le (P_{\mathcal{L}})^*(A) \\ \text{and} \quad r_i = P(\{\omega_i\}), \ i = 1, \dots, n \right\}$$

Example

$$\Omega = \{\omega_1, \omega_2, \omega_3\}$$

$$\mathcal{L} = \{P \mid \frac{1}{2} \le P(\{\omega_1, \omega_2\}) \le 1, \quad \frac{1}{2} \le P(\{\omega_2, \omega_3\}) \le 1, \quad \frac{1}{2} \le P(\{\omega_1, \omega_3\}) \le 1\}$$

Let
$$A_1 = \{\omega_1, \omega_2\}, A_2 = \{\omega_2, \omega_3\}, A_3 = \{\omega_1, \omega_3\}$$

 $P_*(A_1) + P_*(A_2) + P_*(A_3) - P_*(A_1 \cap A_2) - P_*(A_2 \cap A_3) - P_*(A_1 \cap A_3) + P_*(A_1 \cap A_2 \cap A_3)$
 $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} - 0 - 0 - 0 + 0 = \frac{3}{2} > 1 = P(A_1 \cup A_2 \cup A_3)$

Rudolf Kruse, Alexander Dockhorn

Bayesian Networks

Belief Revision (3)

If \mathcal{L} is type 1 and $(P_{\mathcal{L}})^*(A \cup B) \ge (P_{\mathcal{L}})^*(A) + (P_{\mathcal{L}})^*(B) - (P_{\mathcal{L}})^*(A \cap B)$, then

$$(P_{\mathcal{L}})^*(A \mid B) = \frac{(P_{\mathcal{L}})^*(A \cap B)}{(P_{\mathcal{L}})^*(A \cap B) + (P_{\mathcal{L}})_*(B \cap \overline{A})}$$

and

$$(P_{\mathcal{L}})_*(A \mid B) = \frac{(P_{\mathcal{L}})_*(A \cap B)}{(P_{\mathcal{L}})_*(A \cap B) + (P_{\mathcal{L}})^*(B \cap \overline{A})}$$

Let \mathcal{L} be a class of type 1. \mathcal{L} is of type 2, iff

$$(P_{\mathcal{L}})_*(A_1 \cup \cdots \cup A_n) \ge \sum_{I: \emptyset \neq I \subseteq \{1, \dots, n\}} (-1)^{|I|+1} \cdot (P_{\mathcal{L}})_*(\bigcap_{i \in I} A_i)$$

Rudolf Kruse, Alexander Dockhorn