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Nonstandard Concepts for Handling

Imprecise Data and Imprecise Probabilities



Problems with Probability Theory
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Representation of Ignorance

We are given a die with faces 1, . . . , 6
What is the certainty of showing up face i ?

◦ Conduct a statistical survey (roll the die 10000 times) and estimate the relative
frequency: P ({i}) = 1

6

◦ Use subjective probabilities (which is often the normal case): We do not know
anything (especially and explicitly we do not have any reason to assign unequal
probabilities), so the most plausible distribution is a uniform one.

Problem: Uniform distribution because of ignorance or extensive statistical
tests

Experts analyze aircraft shapes: 3 aircraft types A,B,C
“It is type A or B with 90% certainty. About C, I don’t have any clue and I do
not want to commit myself. No preferences for A or B.”

Problem: Ignorance hard to handle with Bayesian theory



Random Sets: Modeling Imprecise Data
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“A ⊆ X being an imprecise date” means: the true value x0 lies in A but there are no
preferences on A.

Ω set of possible elementary events

Θ = {ξ} set of observers

λ(ξ) importance of observer ξ

Some elementary event from Ω occurs and every observer ξ ∈ O shall announce which
elementary events she personally considers possible. This set is denoted by Γ(ξ) ⊆ Ω.
Γ(ξ) is then an imprecise date.

λ : 2Θ → [0, 1] probability measure

(interpreted as importance measure)

(Θ, 2Θ, λ) probability space

Γ : Θ→ 2Ω set-valued mapping



Imprecise Data (2)
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Let A ⊆ Ω:

a) Γ∗(A) Def= {ξ ∈ Θ | Γ(ξ) ∩ A 6= ∅}
b) Γ∗(A)

Def
= {ξ ∈ Θ | Γ(ξ) 6= ∅ and Γ(ξ) ⊆ A}

Remarks:

a) If ξ ∈ Γ∗(A), then it is plausible for ξ that the occurred elementary
event lies in A.

b) If ξ ∈ Γ∗(A), then it is certain for ξ that the event lies in A.

c) {ξ | Γ(ξ) 6= ∅} = Γ∗(Ω) = Γ∗(Ω)

Let λ(Γ∗(Ω)) > 0. Then we call

P ∗(A) =
λ(Γ∗(A))
λ(Γ∗(Ω))

the upper, and P∗(A) =
λ(Γ∗(A))
λ(Γ∗(Ω))

the lower

probability w. r. t. λ and Γ.



Example
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Θ = {a, b, c, d} λ : a 7→ 1/6 Γ: a 7→ {1}
Ω = {1, 2, 3} b 7→ 1/6 b 7→ {2}

Γ∗(Ω) = {a, b, d} c 7→ 2/6 c 7→ ∅
λ(Γ∗(Ω)) = 4/6 d 7→ 2/6 d 7→ {2, 3}

A Γ∗(A) Γ∗(A) P ∗(A) P∗(A)
∅ ∅ ∅ 0 0

{1} {a} {a} 1
4

1
4

{2} {b, d} {b} 3
4

1
4

{3} {d} ∅ 1
2 0

{1, 2} {a, b, d} {a, b} 1 1
2

{1, 3} {a, d} {a} 3
4

1
4

{2, 3} {b, d} {b, d} 3
4

3
4

{1, 2, 3} {a, b, d} {a, b, d} 1 1

One can consider P ∗(A) and P∗(A) as upper and lower probability bounds.



Imprecise Data (3)
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Some properties of probability bounds:

a) P ∗ : 2Ω→ [0, 1]

b) 0 ≤ P∗ ≤ P ∗ ≤ 1, P∗(∅) = P ∗(∅) = 0, P∗(Ω) = P ∗(Ω) = 1

c) A ⊆ B ⇒ P ∗(A) ≤ P ∗(B) and P∗(A) ≤ P∗(B)

d) A ∩ B = ∅ 6⇒ P ∗(A) + P ∗(B) = P ∗(A ∪B)

e) P∗(A ∪B) ≥ P∗(A) + P∗(B)− P∗(A ∩B)

f) P ∗(A ∪B) ≤ P ∗(A) + P ∗(B)− P ∗(A ∩B)

g) P∗(A) = 1− P ∗(Ω\A)



Imprecise Data (4)
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One can prove the following generalized equation:

P∗(
n⋃

i=1

Ai) ≥
∑

∅6=I :I⊆{1,...,n}
(−1)|I|+1 · P∗(

⋂

i∈I
Ai)

These set functions also play an important role in theoretical physics (capacities, Cho-
quet, 1955). Shafer did generalize these thoughts and developed a theory of belief
functions.



Belief Revision
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How is new knowledge incoporated?

Every observer announces the location of the ship in form of a subset of all possible ship
locations. Given these set-valued mappings, we can derive upper and lower probabilities
with the help of the observer importance measure. Let us assume the ship is certainly
at sea.

How do the upper/lower probabilities change?



Example
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a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

P∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ A and Γ(ξ) ⊆ B})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B}) =
P∗(A ∩B)

P∗(B)

P ∗(A | B) =
λ({ξ ∈ Θ | Γ(ξ) ⊆ B and Γ(ξ) ∩ A 6= ∅})

λ({ξ ∈ Θ | Γ(ξ) ⊆ B}) =
P ∗(A ∪B)− P ∗(B)

1− P ∗(B)

Θ



Belief Revision (2)
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b) Data Revision
(the observed data is modified such that they fit the certain information)

(P∗)B(A) =
P∗(A ∪B)− P∗(B)

1− P∗(B)

(P ∗)B(A) =
P ∗(A ∩B)

P ∗(B)

These two concepts have different semantics. There are several more belief revision
concepts.



Combination of Random Sets
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Let (Ω, 2Ω) be a space of events. Further be (O1, 2
O1, λ1) and (O2, 2

O2, λ2) spaces of
independent observers.

We call (O1 ×O2, λ1 · λ2) the product space of observers and

Γ : O1 ×O2→ 2Ω,Γ(x1, x2) = Γ1(x1) ∩ Γ2(x2)

the combined observer function.

We obtain with

(PL)∗(A) =
(λ1 · λ2)({(x1, x2) | Γ(x1, x2) 6= ∅ ∧ Γ(x1, x2) ⊑ A})

(λ1 · λ2)({(x1, x2 | Γ(x1, x2) 6= ∅)})
the lower probability of A that respects both observations.



Example
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Ω = {1, 2, 3} λ1 : {a} 7→ 1/3 λ2 : {c} 7→ 1/2

{b} 7→ 2/3 λ2 : {d} 7→ 1/2

O1 = {a, b} Γ1 : a 7→ {1, 2} Γ2 : c 7→ {1}
O2 = {c, d} b 7→ {2, 3} d 7→ {2, 3}

Combination:

O1 ×O2 = {ac, bc, ad, bd}

λ : {ac} 7→ 1/6 Γ: ac 7→ {1} Γ∗(Ω) = {(x1, x2) | Γ(x1, x2) 6= ∅}
{ad} 7→ 1/6 ad 7→ {2} = {ac, ad, bd}
{bc} 7→ 2/6 bc 7→ ∅
{bd} 7→ 2/6 bd 7→ {2, 3} λ(Γ∗(Ω)) = 4/6



Example (2)
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A (P∗)Γ1(A) (P∗)Γ2(A) (P∗)Γ(A)
∅ 0 0 0

{1} 0 1/2
1/4

{2} 0 0 1/4
{3} 0 0 0

{1, 2} 1/3
1/2

1/2
{1, 3} 0 1/2

1/4
{2, 3} 2/3

1/2
3/4

{1, 2, 3} 1 1 1



Belief Functions
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Motivation

(Θ, Q) Sensors

Ω possible results, Γ : Θ→ 2Ω

P∗ : A 7→ ∑
B:B⊆Am(B) Lower probability (Belief)

P ∗ : A 7→ ∑
B:B∩A6=∅m(B) Upper probability (Plausibility)

m : A 7→ Q({θ ∈ Θ | Γ(θ) = A}) mass distribution

Random sets: Dempster (1968)

Belief functions: Shafer (1974)
Development of a completely new uncertainty calculus as an alternative to Prob-
ability Theory



Belief Functions (2)
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The function Bel : 2Ω → [0, 1] is called belief function, if it possesses the following
properties:

Bel(∅) = 0

Bel(Ω) = 1

∀n ∈ N : ∀A1, . . . , An ∈ 2Ω :
Bel(A1 ∪ · · · ∪ An) ≥

∑
∅6=I⊆{1,...,n}(−1)|I|+1 · Bel(

⋂
i∈I Ai)

If Bel is a belief function then for m : 2Ω → R with
m(A) =

∑
B:B⊆A(−1)|A\B| · Bel(B) the following properties hold:

0 ≤ m(A) ≤ 1

m(∅) = 0
∑
A⊆Ωm(A) = 1



Belief Functions (3)
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Let |Ω| <∞ and f, g : 2Ω → [0, 1].

∀A ⊆ Ω: (f(A) =
∑

B:B⊆A
g(B))

⇔
∀A ⊆ Ω: (g(A) =

∑

B:B⊆A
(−1)|A\B| · f(B))

(g is called the Möbius transformed of f)

The mapping m : 2Ω→ [0, 1] is called a mass distribution, if the following properties
hold:

m(∅) = 0
∑
A⊆Ωm(A) = 1



Example
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A ∅ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
m(A) 0 1/4

1/4 0 0 0 2/4 0

Bel(A) 0 1/4
1/4 0 2/4

1/4
3/4 1

Belief =̂ lower probability with modified semantic

Bel({1, 3}) = m(∅) +m({1}) +m({3}) +m({1, 3})
m({1, 3}) = Bel({1, 3})− Bel({1})− Bel({3})

m(A) measure of the trust/belief that exactly A occurs

Belm(A) measure of total belief that A occurs

Plm(A) measure of not being able to disprove A (plausibility)

Plm(A) =
∑

B:A∩B 6=∅
m(B) = 1− Bel(A)

Given one of m,Bel or Pl, the other two can be efficiently computed.



Knowledge Representation
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m(Ω) = 1, m(A) = 0 else total ignorance

m({ω0}) = 1, m(A) = 0 else value (ω0) known

m({ωi}) = pi,
∑n
i=1 pi = 1 Bayesian analysis

Further kinds of partial ignorance can be modeled.



Belief Revision
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Data Revision:

◦ Mass of A flows onto A ∩B.

◦ Masses are normalized to 1 (∅-mass is destroyed)

Geometric Conditioning:

◦ Masses that do not lie completely inside B, flow off

◦ Normalize

The mass flow can be described by specialization matrices



Combinations of Mass Distributions
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Motivation: Combination of m1 and m2

m1(Ai) ·m2(Bj) : Mass attached to Ai ∩Bj ,
if only Ai or Bj are concerned

∑
i,j:Ai∩Bj=Am1(Ai) ·m2(Bj) : Mass attached to A (after combination)

This consideration only leads to a mass distribution,
if
∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) = 0.

If this sum is > 0 normalization takes place.



Combination Rule
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If m1 and m2 are mass distributions over Ω with belief functions Bel1 and Bel2 and
does further hold

∑
i,j:Ai∩Bj=∅m1(Ai) ·m2(Bj) < 1, then the

function m : 2Ω→ [0, 1] ,m(∅) = 0

m(A) =

∑
B,C:B∩C=Am1(B) ·m2(C)

1−∑B,C:B∩C=∅m1(B) ·m2(C)

is a mass distribution. The belief function of m is denoted as comb(Bel1,Bel2) or
Bel1⊕Bel2. The above formula is called the combination rule.



Example
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m1({1, 2}) = 1/3 m2({1}) = 1/2

m1({2, 3}) = 2/3 m2({2, 3}) = 1/2

m = m1 ⊕m2 :

{1} 7→
1/6
4/6

= 1/4

{2} 7→
1/6
4/6

= 1/4

∅ 7→ 0

{2, 3} 7→
2/6
4/6

= 1/2



Combination Rule (2)
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Remarks:

a) The result from the combination rule and the analysis of random sets is identical

b) There are more efficient ways of combination

c) Bel1⊕Bel2 = Bel2⊕Bel1

d) ⊕ is associative

e) Bel1⊕Bel1 6= Bel1 (in general)

f) Bel2 : 2
Ω → [0, 1] ,m2(B) = 1

Bel2(A) =




1 ifB ⊆ A

0 otherwise

The combination of Bel1 and Bel2 yields the data revision of m1 with B.



Decision Making with the Pignistic Transformation
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The pignistic transformation Bet transforms a normalized mass function m into
a probability measure Pm = Bet(m) as follows:

Pm(A) =
∑

∅6=B⊆Ω
m(B)

|A ∩ B|
|B| , ∀A ⊆ Ω.

It can be shown that
bel (A) ≤ Pm(A) ≤ pl(A)



Decision Making - Example
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There are three possible murders

Let m({John}) = 0.48, m({John,Mary}) = 0.12,
m({Peter , John}) = 0.32, m(Ω) = 0.08

We have:

Pm({John}) = 0.48 +
0.12

2
+
0.32

2
+
0.08

3
≈ 0.73

Pm({Peter}) =
0.32

2
+

0.08

3
≈ 0.19

Pm({Mary}) = 0.12

2
+

0.08

3
≈ 0.09

The picmistic transformation givs a reasonable ”Ranking”



Imprecise Probabilities
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Let x0 be the true value but assume there is no information about P (A) to decide
whether x0 ∈ A. There are only probability boundaries.

Let L be a set of probability measures. Then we call

(PL)∗ : 2Ω→ [0, 1] , A 7→ inf{P (A) | P ∈ L} the lower and

(PL)∗ : 2Ω→ [0, 1] , A 7→ sup{P (A) | P ∈ L} the upper

probability of A w. r. t. L.

a) (PL)∗(∅) = (PL)∗(∅) = 0; (PL)∗(Ω) = (PL)∗(Ω) = 1

b) 0 ≤ (PL)∗(A) ≤ (PL)∗(A) ≤ 1

c) (PL)∗(A) = 1− (PL)∗(A)

d) (PL)∗(A) + (PL)∗(B) ≤ (PL)∗(A ∪B)

e) (PL)∗(A ∩B) + (PL)∗(A ∪B) 6≥ (PL)∗(A) + (PL)∗(B)



Belief Revision
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Let B ⊆ Ω and L a class of probabilities. The we call

A ⊆ Ω : (PL)∗(A | B) = inf{P (A | B) | P ∈ L ∧ P (B) > 0} the lower and

A ⊆ Ω : (PL)∗(A | B) = sup{P (A | B) | P ∈ L ∧ P (B) > 0} the upper

conditional probability of A given B.

A class L of probability measures on Ω = {ω1, . . . , ωn} is of type 1, iff there exist
functions R1 and R2 from 2Ω into [0, 1] with:

L = {P | ∀A ⊆ Ω : R1(A) ≤ P (A) ≤ R2(A)}



Belief Revision (2)
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Intuition: P is determined by P ({ωi}), i = 1, . . . , n which corresponds to a point in
R
n with coordinates

(
P ({ω1}), . . . , P ({ωn})

)
.

If L is type 1, it holds true that:

L ⇔
{
(r1, . . . , rn) ∈ R

n | ∃P : ∀A ⊆ Ω:

(PL)∗(A) ≤ P (A) ≤ (PL)∗(A)
and ri = P ({ωi}), i = 1, . . . , n

}



Example
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Ω = {ω1, ω2, ω3}
L = {P | 12 ≤ P ({ω1, ω2}) ≤ 1, 1

2 ≤ P ({ω2, ω3}) ≤ 1, 1
2 ≤ P ({ω1, ω3}) ≤ 1}

general restriction:

0 ≤ P ({ωi}) ≤ 1

P ({ω1}) + P ({ω2}) + P ({ω3}) = 1

{P | 12 ≤ P ({ω1, ω2}) ≤ 1}

Let A1 = {ω1, ω2}, A2 = {ω2, ω3}, A3 = {ω1, ω3}
P∗(A1)+P∗(A2)+P∗(A3)−P∗(A1∩A2)−P∗(A2∩A3)−P∗(A1∩A3)+P∗(A1∩A2∩A3)

=
1

2
+
1

2
+

1

2
− 0− 0− 0 + 0 =

3

2
> 1 = P (A1 ∪ A2 ∪ A3)



Belief Revision (3)
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If L is type 1 and (PL)∗(A ∪B) ≥ (PL)∗(A) + (PL)∗(B)− (PL)∗(A ∩B), then

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)
and

(PL)∗(A | B) =
(PL)∗(A ∩B)

(PL)∗(A ∩B) + (PL)∗(B ∩ A)

Let L be a class of type 1. L is of type 2, iff

(PL)∗(A1 ∪ · · · ∪ An) ≥
∑

I :∅6=I⊆{1,...,n}
(−1)|I|+1 · (PL)∗(

⋂

i∈I
Ai)


