Nonstandard Concepts for Handling Imprecise Data and Imprecise Probabilities

Problems with Probability Theory

Representation of Ignorance
We are given a die with faces $1, \ldots, 6$
What is the certainty of showing up face i ?

- Conduct a statistical survey (roll the die 10000 times) and estimate the relative frequency: $P(\{i\})=\frac{1}{6}$
- Use subjective probabilities (which is often the normal case): We do not know anything (especially and explicitly we do not have any reason to assign unequal probabilities), so the most plausible distribution is a uniform one.
Problem: Uniform distribution because of ignorance or extensive statistical tests

Experts analyze aircraft shapes: 3 aircraft types A, B, C
"It is type A or B with 90% certainty. About C, I don't have any clue and I do not want to commit myself. No preferences for A or B."

Problem: Ignorance hard to handle with Bayesian theory

Random Sets: Modeling Imprecise Data

" $A \subseteq X$ being an imprecise date" means: the true value x_{0} lies in A but there are no preferences on A.
$\Omega \quad$ set of possible elementary events
$\Theta=\{\xi\} \quad$ set of observers
$\lambda(\xi) \quad$ importance of observer ξ
Some elementary event from Ω occurs and every observer $\xi \in O$ shall announce which elementary events she personally considers possible. This set is denoted by $\Gamma(\xi) \subseteq \Omega$. $\Gamma(\xi)$ is then an imprecise date.
$\lambda: 2^{\Theta} \rightarrow[0,1] \quad$ probability measure
(interpreted as importance measure)
$\left(\Theta, 2^{\Theta}, \lambda\right) \quad$ probability space
$\Gamma: \Theta \rightarrow 2^{\Omega} \quad$ set-valued mapping

Imprecise Data (2)

Let $A \subseteq \Omega$:
a) $\Gamma^{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \cap A \neq \emptyset\}$
b) $\Gamma_{*}(A) \stackrel{\text { Def }}{=}\{\xi \in \Theta \mid \Gamma(\xi) \neq \emptyset$ and $\Gamma(\xi) \subseteq A\}$

Remarks:
a) If $\xi \in \Gamma^{*}(A)$, then it is plausible for ξ that the occurred elementary event lies in A.
b) If $\xi \in \Gamma_{*}(A)$, then it is certain for ξ that the event lies in A.
c) $\{\xi \mid \Gamma(\xi) \neq \emptyset\}=\Gamma^{*}(\Omega)=\Gamma_{*}(\Omega)$

Let $\lambda\left(\Gamma^{*}(\Omega)\right)>0$. Then we call

$$
P^{*}(A)=\frac{\lambda\left(\Gamma^{*}(A)\right)}{\lambda\left(\Gamma^{*}(\Omega)\right)} \quad \text { the upper, and } \quad P_{*}(A)=\frac{\lambda\left(\Gamma_{*}(A)\right)}{\lambda\left(\Gamma_{*}(\Omega)\right)} \quad \text { the lower }
$$

probability w.r.t. λ and Γ.

Example

$$
\begin{aligned}
& \Theta=\{a, b, c, d\} \quad \lambda: a \mapsto 1 / 6 \\
& \Omega=\{1,2,3\} \\
& \Gamma^{*}(\Omega)=\{a, b, d\} \\
& \lambda\left(\Gamma^{*}(\Omega)\right)=4 / 6 \\
& \begin{aligned}
\Gamma: \quad & \mapsto\{1\} \\
b & \mapsto\{2\} \\
c & \mapsto \emptyset \\
d & \mapsto\{2,3\}
\end{aligned}
\end{aligned}
$$

One can consider $P^{*}(A)$ and $P_{*}(A)$ as upper and lower probability bounds.

Imprecise Data (3)

Some properties of probability bounds:
a) $P^{*}: 2^{\Omega} \rightarrow[0,1]$
b) $0 \leq P_{*} \leq P^{*} \leq 1, \quad P_{*}(\emptyset)=P^{*}(\emptyset)=0, \quad P_{*}(\Omega)=P^{*}(\Omega)=1$
c) $A \subseteq B \quad \Rightarrow \quad P^{*}(A) \leq P^{*}(B) \quad$ and $\quad P_{*}(A) \leq P_{*}(B)$
d) $A \cap B=\emptyset \quad \nRightarrow \quad P^{*}(A)+P^{*}(B)=P^{*}(A \cup B)$
e) $P_{*}(A \cup B) \geq P_{*}(A)+P_{*}(B)-P_{*}(A \cap B)$
f) $P^{*}(A \cup B) \leq P^{*}(A)+P^{*}(B)-P^{*}(A \cap B)$
g) $P_{*}(A)=1-P^{*}(\Omega \backslash A)$

Imprecise Data (4)

One can prove the following generalized equation:

$$
P_{*}\left(\bigcup_{i=1}^{n} A_{i}\right) \geq \sum_{\emptyset \neq I: I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot P_{*}\left(\bigcap_{i \in I} A_{i}\right)
$$

These set functions also play an important role in theoretical physics (capacities, Choquet, 1955). Shafer did generalize these thoughts and developed a theory of belief functions.

Belief Revision

How is new knowledge incoporated?
Every observer announces the location of the ship in form of a subset of all possible ship locations. Given these set-valued mappings, we can derive upper and lower probabilities with the help of the observer importance measure. Let us assume the ship is certainly at sea.

How do the upper/lower probabilities change?

Example

a) Geometric Conditioning
(observers that give partial or full wrong information are discarded)

$$
\begin{aligned}
& P_{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq A \text { and } \Gamma(\xi) \subseteq B\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P_{*}(A \cap B)}{P_{*}(B)} \\
& P^{*}(A \mid B)=\frac{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B \text { and } \Gamma(\xi) \cap A \neq \emptyset\})}{\lambda(\{\xi \in \Theta \mid \Gamma(\xi) \subseteq B\})}=\frac{P^{*}(A \cup \bar{B})-P^{*}(\bar{B})}{1-P^{*}(\bar{B})}
\end{aligned}
$$

Belief Revision (2)

b) Data Revision
(the observed data is modified such that they fit the certain information)

$$
\begin{aligned}
\left(P_{*}\right)_{B}(A) & =\frac{P_{*}(A \cup \bar{B})-P_{*}(\bar{B})}{1-P_{*}(B)} \\
\left(P^{*}\right)_{B}(A) & =\frac{P^{*}(A \cap B)}{P^{*}(B)}
\end{aligned}
$$

These two concepts have different semantics. There are several more belief revision concepts.

Combination of Random Sets

Let $\left(\Omega, 2^{\Omega}\right)$ be a space of events. Further be $\left(O_{1}, 2^{O_{1}}, \lambda_{1}\right)$ and $\left(O_{2}, 2^{O_{2}}, \lambda_{2}\right)$ spaces of independent observers.

We call $\left(O_{1} \times O_{2}, \lambda_{1} \cdot \lambda_{2}\right)$ the product space of observers and

$$
\Gamma: O_{1} \times O_{2} \rightarrow 2^{\Omega}, \Gamma\left(x_{1}, x_{2}\right)=\Gamma_{1}\left(x_{1}\right) \cap \Gamma_{2}\left(x_{2}\right)
$$

the combined observer function.
We obtain with

$$
\left(P_{L}\right)_{*}(A)=\frac{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset \wedge \Gamma\left(x_{1}, x_{2}\right) \sqsubseteq A\right\}\right)}{\left(\lambda_{1} \cdot \lambda_{2}\right)\left(\left\{\left(x_{1}, x_{2} \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right)\right\}\right)}
$$

the lower probability of A that respects both observations.

Example

$$
\begin{aligned}
\Omega=\{1,2,3\} & \lambda_{1}:\{a\} & \mapsto 1 / 3 & \lambda_{2}:\{c\} \mapsto 1 / 2 \\
& & \{b\} & \mapsto 2 / 3 \\
O_{1}=\{a, b\} & \Gamma_{1}: & a & \mapsto\{1,2\} \\
O_{2}=\{c, d\} & & b & \left.\Gamma_{2}: c d\right\} \mapsto 1 / 2 \\
& & b & \mapsto\{1\} \\
& & d & \mapsto\{2,3\}
\end{aligned}
$$

Combination:

$$
O_{1} \times O_{2}=\{\overline{a c}, \overline{b c}, \overline{a d}, \overline{b d}\}
$$

$$
\begin{aligned}
\lambda: & \{\overline{a c}\} \\
\{\overline{a d}\} & \mapsto 1 / 6 \\
\{\overline{b c}\} & \mapsto 1 / 6 \\
\{\overline{b d}\} & \mapsto 1 / 6
\end{aligned}
$$

$$
\Gamma: \overline{a c} \mapsto\{1\}
$$

$$
\overline{a d} \mapsto\{2\}
$$

$$
\overline{b c} \mapsto \emptyset
$$

$$
\overline{b d} \mapsto\{2,3\}
$$

$$
\begin{aligned}
\Gamma_{*}(\Omega) & =\left\{\left(x_{1}, x_{2}\right) \mid \Gamma\left(x_{1}, x_{2}\right) \neq \emptyset\right\} \\
& =\{\overline{a c}, \overline{a d}, \overline{b d}\} \\
\lambda\left(\Gamma_{*}(\Omega)\right) & =4 / 6
\end{aligned}
$$

Example (2)

A	$\left(P_{*}\right)_{\Gamma_{1}}(A)$	$\left(P_{*}\right)_{\Gamma_{2}}(A)$	$\left(P_{*}\right)_{\Gamma}(A)$
\emptyset	0	0	0
$\{1\}$	0	$1 / 2$	$1 / 4$
$\{2\}$	0	0	$1 / 4$
$\{3\}$	0	0	0
$\{1,2\}$	$1 / 3$	$1 / 2$	$1 / 2$
$\{1,3\}$	0	$1 / 2$	$1 / 4$
$\{2,3\}$	$2 / 3$	$1 / 2$	$3 / 4$
$\{1,2,3\}$	1	1	1

Belief Functions

Motivation
$(\Theta, Q) \quad$ Sensors
$\Omega \quad$ possible results, $\Gamma: \Theta \rightarrow 2^{\Omega}$
$P_{*}: \quad A \mapsto \sum_{B: B \subseteq A} m(B)$
$P^{*}: \quad A \mapsto \sum_{B: B \cap A \neq \emptyset} m(B)$
$m: \quad A \mapsto Q(\{\theta \in \Theta \mid \Gamma(\theta)=A\})$
Lower probability (Belief)
Upper probability (Plausibility)
mass distribution

Random sets: Dempster (1968)
Belief functions: Shafer (1974)
Development of a completely new uncertainty calculus as an alternative to Probability Theory

Belief Functions (2)

The function Bel : $2^{\Omega} \rightarrow[0,1]$ is called belief function, if it possesses the following properties:

$$
\begin{aligned}
& \operatorname{Bel}(\emptyset)=0 \\
& \operatorname{Bel}(\Omega)=1 \\
& \forall n \in \mathbb{N}: \forall A_{1}, \ldots, A_{n} \in 2^{\Omega}: \\
& \operatorname{Bel}\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot \operatorname{Bel}\left(\cap_{i \in I} A_{i}\right)
\end{aligned}
$$

If Bel is a belief function then for $m: 2^{\Omega} \rightarrow \mathbb{R}$ with $m(A)=\sum_{B: B \subseteq A}(-1)^{|A \backslash B|} \cdot \operatorname{Bel}(B)$ the following properties hold:

$$
\begin{aligned}
& 0 \leq m(A) \leq 1 \\
& m(\emptyset)=0
\end{aligned}
$$

$$
\sum_{A \subseteq \Omega} m(A)=1
$$

Belief Functions (3)

Let $|\Omega|<\infty$ and $f, g: 2^{\Omega} \rightarrow[0,1]$.

$$
\begin{aligned}
& \forall A \subseteq \Omega:\left(f(A)=\sum_{B: B \subseteq A} g(B)\right) \\
& \quad \Leftrightarrow \\
& \forall A \subseteq \Omega:\left(g(A)=\sum_{B: B \subseteq A}(-1)^{|A \backslash B|} \cdot f(B)\right)
\end{aligned}
$$

(g is called the Möbius transformed of f)
The mapping $m: 2^{\Omega} \rightarrow[0,1]$ is called a mass distribution, if the following properties hold:

$$
\begin{aligned}
& m(\emptyset)=0 \\
& \sum_{A \subseteq \Omega} m(A)=1
\end{aligned}
$$

Example

A	\emptyset	$\{1\}$	$\{2\}$	$\{3\}$	$\{1,2\}$	$\{2,3\}$	$\{1,3\}$	$\{1,2,3\}$
$m(A)$	0	$1 / 4$	$1 / 4$	0	0	0	$2 / 4$	0
$\operatorname{Bel}(A)$	0	$1 / 4$	$1 / 4$	0	$2 / 4$	$1 / 4$	$3 / 4$	1

Belief $\widehat{=}$ lower probability with modified semantic

$$
\begin{aligned}
\operatorname{Bel}(\{1,3\}) & =m(\emptyset)+m(\{1\})+m(\{3\})+m(\{1,3\}) \\
m(\{1,3\}) & =\operatorname{Bel}(\{1,3\})-\operatorname{Bel}(\{1\})-\operatorname{Bel}(\{3\})
\end{aligned}
$$

$m(A) \quad$ measure of the trust/belief that exactly A occurs
$\operatorname{Bel}_{m}(A) \quad$ measure of total belief that A occurs
$\mathrm{Pl}_{m}(A) \quad$ measure of not being able to disprove A (plausibility)

$$
\operatorname{Pl}_{m}(A)=\sum_{B: A \cap B \neq \emptyset} m(B)=1-\operatorname{Bel}(\bar{A})
$$

Given one of m, Bel or Pl , the other two can be efficiently computed.

Knowledge Representation

$$
\begin{array}{ll}
m(\Omega)=1, m(A)=0 \text { else } & \text { total ignorance } \\
m\left(\left\{\omega_{0}\right\}\right)=1, m(A)=0 \text { else } & \text { value }\left(\omega_{0}\right) \text { known } \\
m\left(\left\{\omega_{i}\right\}\right)=p_{i}, \sum_{i=1}^{n} p_{i}=1 & \text { Bayesian analysis }
\end{array}
$$

Further kinds of partial ignorance can be modeled.

Belief Revision

Data Revision:

- Mass of A flows onto $A \cap B$.
- Masses are normalized to 1 (\emptyset-mass is destroyed)

Geometric Conditioning:

- Masses that do not lie completely inside B, flow off
- Normalize

The mass flow can be described by specialization matrices

Combinations of Mass Distributions

Motivation: Combination of m_{1} and m_{2} $m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right):$

Mass attached to $A_{i} \cap B_{j}$, if only A_{i} or B_{j} are concerned
$\sum_{i, j: A_{i} \cap B_{j}=A} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right): \quad$ Mass attached to A (after combination)
This consideration only leads to a mass distribution, if $\sum_{i, j: A_{i} \cap B_{j}=\emptyset} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right)=0$.
If this sum is >0 normalization takes place.

Combination Rule

If m_{1} and m_{2} are mass distributions over Ω with belief functions Bel_{1} and Bel_{2} and does further hold $\sum_{i, j: A_{i} \cap B_{j}=\emptyset} m_{1}\left(A_{i}\right) \cdot m_{2}\left(B_{j}\right)<1$, then the function $m: 2^{\Omega} \rightarrow[0,1], m(\emptyset)=0$

$$
m(A)=\frac{\sum_{B, C: B \cap C=A} m_{1}(B) \cdot m_{2}(C)}{1-\sum_{B, C: B \cap C=\emptyset} m_{1}(B) \cdot m_{2}(C)}
$$

is a mass distribution. The belief function of m is denoted as comb $\left(\operatorname{Bel}_{1}, \mathrm{Bel}_{2}\right)$ or $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}$. The above formula is called the combination rule.

Example

$$
\begin{array}{lr}
m_{1}(\{1,2\})=1 / 3 & m_{2}(\{1\})=1 / 2 \\
m_{1}(\{2,3\})=\frac{1}{3} & m_{2}(\{2,3\})=1 / 2
\end{array}
$$

$$
m=m_{1} \oplus m_{2}:
$$

$$
\{1\} \mapsto \frac{1 / 6}{4 / 6}=1 / 4
$$

$$
\{2\} \mapsto \frac{1 / 6}{4 / 6}=1 / 4
$$

$$
\emptyset \mapsto 0
$$

$$
\{2,3\} \mapsto \frac{2 / 6}{4 / 6}=1 / 2
$$

Combination Rule (2)

Remarks:
a) The result from the combination rule and the analysis of random sets is identical
b) There are more efficient ways of combination
c) $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{2}=\mathrm{Bel}_{2} \oplus \mathrm{Bel}_{1}$
d) \oplus is associative
e) $\mathrm{Bel}_{1} \oplus \mathrm{Bel}_{1} \neq \mathrm{Bel}_{1}($ in general $)$
f) $\mathrm{Bel}_{2}: 2^{\Omega} \rightarrow[0,1], m_{2}(B)=1$

$$
\operatorname{Bel}_{2}(A)= \begin{cases}1 & \text { if } B \subseteq A \\ 0 & \text { otherwise }\end{cases}
$$

The combination of Bel_{1} and Bel_{2} yields the data revision of m_{1} with B.

Decision Making with the Pignistic Transformation

The pignistic transformation Bet transforms a normalized mass function m into a probability measure $P_{m}=\operatorname{Bet}(m)$ as follows:

$$
P_{m}(A)=\sum_{\emptyset \neq B \subseteq \Omega} m(B) \frac{|A \cap B|}{|B|}, \forall A \subseteq \Omega .
$$

It can be shown that

$$
\operatorname{bel}(A) \leq P_{m}(A) \leq p l(A)
$$

Decision Making - Example

There are three possible murders
Let $m(\{J o h n\})=0.48, \quad m(\{J o h n$, Mary $\})=0.12$, $m(\{$ Peter, John $\})=0.32, \quad m(\Omega)=0.08$

We have:

$$
\begin{aligned}
& P_{m}(\{\text { John }\})=0.48+\frac{0.12}{2}+\frac{0.32}{2}+\frac{0.08}{3} \approx 0.73 \\
& P_{m}(\{\text { Peter }\})=\frac{0.32}{2}+\frac{0.08}{3} \approx 0.19 \\
& P_{m}(\{\text { Mary }\})=\frac{0.12}{2}+\frac{0.08}{3} \approx 0.09
\end{aligned}
$$

The picmistic transformation givs a reasonable "Ranking"

Imprecise Probabilities

Let x_{0} be the true value but assume there is no information about $P(A)$ to decide whether $x_{0} \in A$. There are only probability boundaries.

Let \mathcal{L} be a set of probability measures. Then we call

$$
\begin{array}{ll}
\left(P_{\mathcal{L}}\right)_{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \inf \{P(A) \mid P \in \mathcal{L}\} & \\
\left(P_{\mathcal{L}}\right)^{*}: 2^{\Omega} \rightarrow[0,1], A \mapsto \sup \{P(A) \mid P \in \mathcal{L}\} & \\
\text { the lower and } \\
\end{array}
$$

probability of A w. r.t. \mathcal{L}.
a) $\left(P_{\mathcal{L}}\right)_{*}(\emptyset)=\left(P_{\mathcal{L}}\right)^{*}(\emptyset)=0 ; \quad\left(P_{\mathcal{L}}\right)_{*}(\Omega)=\left(P_{\mathcal{L}}\right)^{*}(\Omega)=1$
b) $0 \leq\left(P_{\mathcal{L}}\right)_{*}(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A) \leq 1$
c) $\left(P_{\mathcal{L}}\right)^{*}(A)=1-\left(P_{\mathcal{L}}\right)_{*}(\bar{A})$
d) $\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B) \leq\left(P_{\mathcal{L}}\right)_{*}(A \cup B)$
e) $\left(P_{\mathcal{L}}\right) *(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(A \cup B) \nsupseteq\left(P_{\mathcal{L}}\right)_{*}(A)+\left(P_{\mathcal{L}}\right)_{*}(B)$

Belief Revision

Let $B \subseteq \Omega$ and \mathcal{L} a class of probabilities. The we call

$$
\begin{array}{ll}
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\inf \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the lower and } \\
A \subseteq \Omega:\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\sup \{P(A \mid B) \mid P \in \mathcal{L} \wedge P(B)>0\} & \text { the upper }
\end{array}
$$

conditional probability of A given B.
A class \mathcal{L} of probability measures on $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is of type 1 , iff there exist functions R_{1} and R_{2} from 2^{Ω} into $[0,1]$ with:

$$
\mathcal{L}=\left\{P \mid \forall A \subseteq \Omega: R_{1}(A) \leq P(A) \leq R_{2}(A)\right\}
$$

Belief Revision (2)

Intuition: P is determined by $P\left(\left\{\omega_{i}\right\}\right), i=1, \ldots, n$ which corresponds to a point in \mathbb{R}^{n} with coordinates $\left(P\left(\left\{\omega_{1}\right\}\right), \ldots, P\left(\left\{\omega_{n}\right\}\right)\right)$.

If \mathcal{L} is type 1 , it holds true that:

$$
\begin{aligned}
& \mathcal{L} \Leftrightarrow\left\{\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}^{n} \mid \exists P: \forall A \subseteq \Omega:\right. \\
&\left(P_{\mathcal{L}) *}\right) \\
& \quad \text { and }(A) \leq P(A) \leq\left(P_{\mathcal{L}}\right)^{*}(A)
\end{aligned}
$$

Example

$$
\begin{aligned}
& \Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\} \\
& \mathcal{L}=\left\{P \left\lvert\, \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{2}\right\}\right) \leq 1\right., \quad \frac{1}{2} \leq P\left(\left\{\omega_{2}, \omega_{3}\right\}\right) \leq 1, \quad \frac{1}{2} \leq P\left(\left\{\omega_{1}, \omega_{3}\right\}\right) \leq 1\right\}
\end{aligned}
$$

general restriction:

$$
0 \leq P\left(\left\{\omega_{i}\right\}\right) \leq 1
$$

$$
P\left(\left\{\omega_{1}\right\}\right)+P\left(\left\{\omega_{2}\right\}\right)+P\left(\left\{\omega_{3}\right\}\right)=1
$$

Let $A_{1}=\left\{\omega_{1}, \omega_{2}\right\}, A_{2}=\left\{\omega_{2}, \omega_{3}\right\}, A_{3}=\left\{\omega_{1}, \omega_{3}\right\}$

$$
\begin{array}{r}
P_{*}\left(A_{1}\right)+P_{*}\left(A_{2}\right)+P_{*}\left(A_{3}\right)-P_{*}\left(A_{1} \cap A_{2}\right)-P_{*}\left(A_{2} \cap A_{3}\right)-P_{*}\left(A_{1} \cap A_{3}\right)+P_{*}\left(A_{1} \cap A_{2} \cap A_{3}\right) \\
=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}-0-0-0+0=\frac{3}{2}>1=P\left(A_{1} \cup A_{2} \cup A_{3}\right)
\end{array}
$$

Belief Revision (3)

If \mathcal{L} is type 1 and $\left(P_{\mathcal{L}}\right)^{*}(A \cup B) \geq\left(P_{\mathcal{L}}\right)^{*}(A)+\left(P_{\mathcal{L}}\right)^{*}(B)-\left(P_{\mathcal{L}}\right)^{*}(A \cap B)$, then

$$
\left(P_{\mathcal{L}}\right)^{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)^{*}(A \cap B)+\left(P_{\mathcal{L}}\right)_{*}(B \cap \bar{A})}
$$

and

$$
\left(P_{\mathcal{L}}\right)_{*}(A \mid B)=\frac{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)}{\left(P_{\mathcal{L}}\right)_{*}(A \cap B)+\left(P_{\mathcal{L}}\right)^{*}(B \cap \bar{A})}
$$

Let \mathcal{L} be a class of type $1 . \mathcal{L}$ is of type 2 , iff

$$
\left(P_{\mathcal{L}}\right)_{*}\left(A_{1} \cup \cdots \cup A_{n}\right) \geq \sum_{I: \emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{|I|+1} \cdot\left(P_{\mathcal{L}}\right) *\left(\bigcap_{i \in I} A_{i}\right)
$$

