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Building Bayes Networks:

Parameter Learning



Learning Naive Bayes Classifier
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Given: A database of samples from domain of interest.
The graph underlying a graphical model for the domain.

Desired: Good values for the numeric parameters of the model.

Example: Naive Bayes Classifiers
A naive Bayes classifier is a Bayesian network with star-like structure.

The class attribute is the only unconditional attribute.

All other attributes are conditioned on the class only
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· · ·

An

The structure of a naive Bayes classifier is fixed once
the attributes have been selected. The only remain-
ing task is to estimate the parameters of the needed
probability distributions.



Probabilistic Classification
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A classifier is an algorithm that assigns a class from a predefined set to a case or
object, based on the values of descriptive attributes.

An optimal classifier maximizes the probability of a correct class assignment.

◦ Let C be a class attribute with dom(C) = {c1, . . . , cnC},
which occur with probabilities pi, 1 ≤ i ≤ nC .

◦ Let qi be the probability with which a classifier assigns class ci.
(qi ∈ {0, 1} for a deterministic classifier)

◦ The probability of a correct assignment is

P (correct assignment) =
nC∑

i=1

piqi.

◦ Therefore the best choice for the qi is

qi =

{
1, if pi = max

nC
k=1 pk,

0, otherwise.
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Consequence: An optimal classifier should assign the most probable class.

This argument does not change if we take descriptive attributes into account.

◦ Let U = {A1, . . . , Am} be a set of descriptive attributes
with domains dom(Ak), 1 ≤ k ≤ m.

◦ Let A1 = a1, . . . , Am = am be an instantiation of the descriptive attributes.

◦ An optimal classifier should assign the class ci for which

P (C = ci | A1 = a1, . . . , Am = am) =

max
nC
j=1 P (C = cj | A1 = a1, . . . , Am = am)

Problem: We cannot store a class (or the class probabilities) for every
possible instantiation A1 = a1, . . . , Am = am of the descriptive attributes.
(The table size grows exponentially with the number of attributes.)

Therefore: Simplifying assumptions are necessary.



Bayes’ Rule and Bayes’ Classifiers
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Bayes’ classifiers: Compute the class probabilities as

P (C = ci | A1 = a1, . . . , Am = am) =

P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am)
.

Looks unreasonable at first sight: Even more probabilities to store.



Naive Bayes Classifiers
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Naive Assumption:
The descriptive attributes are conditionally independent given the class.

Bayes’ Rule:

P (C = ci | ω) =
P (A1 = a1, . . . , Am = am | C = ci) · P (C = ci)

P (A1 = a1, . . . , Am = am) ← p0
abbrev. for the

normalizing constant

Chain Rule of Probability:

P (C = ci | ω) =
P (C = ci)

p0
·
m∏

k=1

P (Ak = ak | A1 = a1, . . . , Ak−1 = ak−1, C = ci)

Conditional Independence Assumption:

P (C = ci | ω) =
P (C = ci)

p0
·
m∏

k=1

P (Ak = ak | C = ci)



Naive Bayes Classifiers (continued)
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Consequence: Manageable amount of data to store.
Store distributions P (C = ci) and ∀1 ≤ k ≤ m : P (Ak = ak | C = ci).

Classification: Compute for all classes ci

P (C = ci|A1 = a1, . . . , Am = am) · p0 = P (C = ci) ·
n∏

j=1

P (Aj = aj|C = ci)

and predict the class ci for which this value is largest.

Relation to Bayesian Networks:

C

A1

A2

A3

A4

· · ·

An

Decomposition formula:

P (C = ci, A1 = a1, . . . , An = an)

= P (C = ci) ·
n∏

j=1

P (Aj = aj|C = ci)



Naive Bayes Classifiers: Parameter Estimation
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Estimation of Probabilities:

Nominal/Categorical Attributes

P̂ (Ak = ak | C = ci) =
#(Ak = ak, C = ci) + γ

#(C = ci) + nAkγ

#(ϕ) is the number of example cases that satisfy the condition ϕ

nAj is the number of values of the attribute Aj .

γ is called Laplace correction

γ = 0: Maximum likelihood estimation.

Common choices: γ = 1 or γ = 1
2.

Laplace correction help to avoid problems with attribute values

that do not occur with some class in the given data.

It also introduces a bias towards a uniform distribution.
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Estimation of Probabilities:

Metric/Numeric Attributes: Assume a normal distribution.

P (Ak = ak | C = ci) =
1√

2πσk(ci)
exp

(
−(ak − µk(ci))

2

2σ2k(ci)

)

Estimate of mean value

µ̂k(ci) =
1

#(C = ci)

#(C=ci)∑

j=1

ak(j)

Estimate of variance

σ̂2k(ci) =
1

ξ

#(C=ci)∑

j=1

(ak(j)− µ̂k(ci))2

ξ = #(C = ci) : Maximum likelihood estimation
ξ = #(C = ci)− 1: Unbiased estimation



Naive Bayes Classifiers: Simple Example 1
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No Sex Age Blood pr. Drug

1 male 20 normal A
2 female 73 normal B
3 female 37 high A
4 male 33 low B
5 female 48 high A
6 male 29 normal A
7 female 52 normal B
8 male 42 low B
9 male 61 normal B
10 female 30 normal A
11 female 26 low B
12 male 54 high A

P (Drug) A B

0.5 0.5

P (Sex | Drug) A B

male 0.5 0.5
female 0.5 0.5

P (Age | Drug) A B

µ 36.3 47.8

σ2 161.9 311.0

P (Blood Pr. | Drug) A B

low 0 0.5
normal 0.5 0.5
high 0.5 0

A simple database and estimated (conditional) probability distributions.



Naive Bayes Classifiers: Simple Example 1

Rudolf Kruse, Alexander Dockhorn Bayesian Networks 352

P (Drug A | male, 61, normal)

= c1 · P (Drug A) · P (male | Drug A) · P (61 | Drug A) · P (normal | Drug A)

≈ c1 · 0.5 · 0.5 · 0.004787 · 0.5 = c1 · 5.984 · 10−4 = 0.219

P (Drug B | male, 61, normal)

= c1 · P (Drug B) · P (male | Drug B) · P (61 | Drug B) · P (normal | Drug B)

≈ c1 · 0.5 · 0.5 · 0.017120 · 0.5 = c1 · 2.140 · 10−3 = 0.781

P (Drug A | female, 30, normal)

= c2 · P (Drug A) · P (female | Drug A) · P (30 | Drug A) · P (normal | Drug A)

≈ c2 · 0.5 · 0.5 · 0.027703 · 0.5 = c2 · 3.471 · 10−3 = 0.671

P (Drug B | female, 30, normal)

= c2 · P (Drug B) · P (female | Drug B) · P (30 | Drug B) · P (normal | Drug B)

≈ c2 · 0.5 · 0.5 · 0.013567 · 0.5 = c2 · 1.696 · 10−3 = 0.329



Naive Bayes Classifiers: Simple Example 2
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100 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Classes overlap:
classification is not perfect

Naive Bayes Classifier



Naive Bayes Classifiers: Simple Example 3
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20 data points, 2 classes

Small squares: mean values

Inner ellipses:
one standard deviation

Outer ellipses:
two standard deviations

Attributes are not conditionally
independent given the class

Naive Bayes Classifier



Learning the parameters of a Graphical Model
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Probability values can be estimated using methods of inductive statistics.

P(G)

P(F|G,M)

P(M)

V = {G,M, F}
dom(G) = {g, g}
dom(M) = {m,m}
dom(F) = {f, f}



Learning the parameters of a Graphical Model
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Flu G g g g g g g g g

Malaria M m m m m m m m m

Fever F f f f f f f f f

# 34 6 2 8 16 24 0 10

Database D with 100 en-
tries for 3 attributes.

As the structure given by the graph of the previous slide suggests, the probability
of P (g,m, f) can be computed by:

P (g,m, f) = P (g)P (m)P (f | g,m)
Estimates for these probabilities can be calculated, e.g. using the database

P̂ (f | g,m) = P̂ (f, g,m)

P̂ (g,m)
=

#(g,m,f)
|D|

#(g,m)
|D|

=
#(g,m, f)

#(g,m)
=

10

10
= 1.00

P̂ (f | g,m) = P̂ (f, g,m)

P̂ (g,m)
=

#(g,m,f)
|D|

#(g,m)
|D|

=
#(g,m, f)

#(g,m)
=

6

40
= 0.15



Likelihood of a Database
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Let BP be the description of the parameters, BS be the given structure and D the
data.
The likelihood of the calculated probabilities P (D | BS, BP ) can be computed under
presence of three assumptions:

1. The data generation process can be described exactly by a Bayesian network
(BS, BP )

2. The single tuples of the dataset are independent of each other.

3. All tuples are complete, therefore no missing values hinder the probability inference

The first assumption legitimates the search of an appropriate bayesian network.

The second assumption is required for an unbiased observation of dataset tuples.

Assumption three ensures the inference ofBP usingD andBS as shown on the previous
slides.



Likelihood of a Database
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Flu G g g g g g g g g

Malaria M m m m m m m m m

Fever F f f f f f f f f

# 34 6 2 8 16 24 0 10

Database D with 100 en-
tries ch for 3 attributes.

P (D | BS, BP ) =
100∏

h=1

P (ch | BS, BP )

=

Case 1︷ ︸︸ ︷
P (g,m, f) · · · · ·

Case 10︷ ︸︸ ︷
P (g,m, f)︸ ︷︷ ︸

10 times

· · ·
Case 51︷ ︸︸ ︷

P (g,m, f) · · · · ·
Case 58︷ ︸︸ ︷

P (g,m, f)︸ ︷︷ ︸
8 times

· · ·
Case 67︷ ︸︸ ︷

P (g,m, f) · · · · ·
Case 100︷ ︸︸ ︷
P (g,m, f)︸ ︷︷ ︸

34 times

=

‖︷ ︸︸ ︷
P (g,m, f)10︸ ︷︷ ︸

‖
· · ·

‖︷ ︸︸ ︷
P (g,m, f)8︸ ︷︷ ︸

‖
· · ·

‖︷ ︸︸ ︷
P (g,m, f)34︸ ︷︷ ︸

‖

=
︷ ︸︸ ︷
P (f | g,m)10P (g)10P (m)10 · · ·

︷ ︸︸ ︷
P (f | g,m)8P (g)8P (m)8 · · ·

︷ ︸︸ ︷
P (f | g,m)34P (g)34P (m)34
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P (D | BS, BP ) =
100∏

h=1

P (ch | BS, BP )

= P (f | g,m)10P (f | g,m)0P (f | g,m)24P (f | g,m)16

· P (f | g,m)8P (f | g,m)2P (f | g,m)6P (f | g,m)34

· P (g)50P (g)50P (m)20P (m)80

The last equation shows the principle of reordering the factors:

First, we sort by attributes (here: F, G then M).

Within the same attributes, factors are grouped by the parent attributes’ values
combinations (here: for F: (g,m), (g,m), (g,m) and (g,m)).

Finally, it is sorted by attribute values (here: for F: first f, then f).

Bayes Theorem gives the likelihood P (BP | D,BS).
Maximum likelihood approach gives a good estimate for B̂P .
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General likelihood of a database D given a known Bayesian network structure BS and
the parameters BP :

P (D | BS, BP ) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
αijk
ijk

General potential table:

P (Ai = aik | parents(Ai) = Qij) = θijk

ri∑

k=1

θijk = 1


