Exercise Sheet 10

Markov Properties of Undirected Graphs

Let $(\cdot \perp \!\!\! \perp \cdot \mid \cdot)$ be the ternary relation that represents the conditional independence statements that hold true in a probability distribution p over a common domain and set V of attributes. An undirected graph G = (V, E) satisfies the

pairwise Markov property

if and only if every pair of non-adjacent attributes in the graph are conditional independent in p given all other attributes, i. e.

$$\forall A, B \in V, A \neq B : (A, B) \notin E \Rightarrow A \perp \!\!\!\perp B \mid V \setminus \{A, B\}.$$

G has the local Markov property

if and only if every attribute in p is conditionally independent of all others given its neighbors, i. e.

$$\forall A \in V : A \perp \!\!\!\perp V \setminus \{A\} \setminus \operatorname{neighbors}(A) \mid \operatorname{neighbors}(A),$$

with neighbors(A) = $\{B \in V \mid (A, B) \in E\},\$

G has the global Markov property

if and only if from u-separation of two sets of attributes given a third one it follows that these two sets are conditionally independent in p given the third one, i. e.

$$\forall X,Y,Z\subseteq V:\ \langle X\mid Z\mid Y\rangle_G\Rightarrow X\perp\!\!\!\perp\!\!\!\perp Y\mid Z.$$

Exercise 31 Markov Properties of Undirected Graphs

Consider the following graph:

Let $dom(A) = \cdots = dom(E) = \{0, 1\}$. Assuming the probability distribution $P(A = 0) = P(E = 0) = \frac{1}{2}$, A = B (i. e. $P(B = 0 \mid A = 0) = 1$ and $P(B = 1 \mid A = 1) = 1$), D = E and $C = B \cdot D$, show that the graph satisfies the pairwise and local but not the global Markov property.

Exercise 32 Dempster-Shafer Theory

Specify for all following mass distributions over $\Omega = \{1, 2, 3\}$ the respective belief and plausibility function (missing table entries denote 0).

	m_1	m_2	m_3	m_4	m_5
Ø					
{1}			0.2		0.25
{2}		1	0.5	0.4	
{3}			0.3		
$\{1, 2\}$				0.1	
$\{1,3\}$					
$\{2, 3\}$				0.5	0.75
$\{1, 2, 3\}$	1				

Exercise 33 Dempster-Shafer Theory

Homicide was committed. The circle of suspects consists of three persons:

$$\Omega = \{\mathsf{Antony}, \mathsf{Beth}, \mathsf{Charly}\}$$

We assume that exactly one of these persons has committed the homicide. Two witnesses provide us with the following evidence:

- $m_1(\{Antony, Beth\}) = 0.8$ und $m_1(\{Charly\}) = 0.2$
- $m_2(\{Antony, Charly\}) = 0.3 \text{ und } m_2(\{Beth\}) = 0.7$

Calculate $m_1 \oplus m_2$ and $\text{Bel}_1 \oplus \text{Bel}_2$ for the arguments $\emptyset, \{\text{Antony}\}, \{\text{Beth}\}\$ und $\{\text{Charly}\}.$