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Abstract

We propose a novel methodology for interactive multi-objective optimization taking into ac-
count imprecision, ill-determination and uncertainty referring to both, the technical aspects
determining evaluations of solutions by objective functions and the subjective aspects related
to the preferences of the decision maker. With this aim, we consider a probability distribu-
tion on the space of the objective functions and a probability distribution on the space of the
utility functions representing preferences of the decision maker. On the basis of these two
probability distributions, without loss of generality supposed to be independent, one can com-
pute a multi-criteria expected utility with a corresponding standard deviation, that permit to
assess a quality of each proposed solution. One can also compute an average multi-criteria
expected utility and a related standard deviation for a set of solutions, which permit to assess a
quality of a population of solutions. This feature can be useful in evolutionary multi-objective
optimization algorithms to compare populations of solutions in successive iterations.

1 Introduction
This paper summarizes the work of the Preference Uncertainty Quantification working group at the
Dagstuhl seminar 18031 “Personalized Multi-objective Programming: An Analytics Perspective"
that took place in Schloss Dagstuhl – Leibniz Center for Informatics - on January 14-19, 2018.

2 Uncertainties
When dealing with multi-objective optimization problems, the decision makers (DMs), and the
analysts helping them to solve these problems, are confronted in their reasoning with some uncer-
tainties that are inherent to two kinds of “imperfect” information (see [?] and [?]):

1. Information about the preferences of DMs is always partial and ill-defined. Even more,
complete preferences do not exist a priori in DMs’ mind, because they evolve in the decision
aiding process in interaction with an analyst. The preferences are formed in a constructive
learning process in which DMs get a conviction that the most preferred solution has been
reached for a given problem statement.

2. Information about consequences of considered solutions usually depend on hardly measurable
or random variables. This makes that, in general, the evaluation of solutions with respect to
different criteria is imprecise or uncertain.

Therefore, there is a need to take into account these two sources of uncertainty in an interactive
multi-objective optimization process. A first consideration of this problem, but taking into account
only uncertainty related to utility functions, has been proposed in [?].
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3 Problem Formulation and Basic Notation
The multi-objective optimization process presented in this paper is formally represented as a multi-
objective programming problem under performance and preference uncertainty as follows. Let
X ⊂ Rn be an n-dimensional set of feasible decisions (or solutions, designs, alternatives, etc.)
Let f : Rn → Rm be an m-dimensional vector, called objective function, that maps each decision
x ∈ X to a corresponding consequence or performance vector y = f(x). To model performance
uncertainty, we assume that each objective function f = (f1, f2, . . . , fm) is a random element of
some (for now: a priori) given set F of cardinality k, i.e., F = {f1, f2, . . . , fk} with random
outputs yi = (yi1, y

i
2, . . . , y

i
m) for each i ∈ {1, 2, . . . , k}. In other words, for each i ∈ {1, 2, . . . , k},

the vector function f i = (f i1, f
i
2, . . . , f

i
m) is one realization of the random objective function f .

Moreover, under the additional assumption that this uncertainty is stochastic in nature, we can
assign or estimate a stochastic probability vector p = (p1, p2, . . . , pk) with

∑k
i=1 pi = 1 and with

the interpretation that Pr[f = f i] = Pr[y = yi] = pi for each i ∈ {1, 2, . . . , k}. In this way, we have
defined a discrete probability distribution on the space of values taken by the objective function.
Obviously, one can consider a generic probability distribution, not necessarily a discrete one. For
a scheme of this setting, see the conceptual relationship between technical information about the
performance and conjoint probability distribution on values of the objective function in Figure 1 on
the top.

Similarly, we can describe the uncertainty about preferences of the DM, considering a utility
function u : Rm → R, such that y 7→ z = u(y). Again, u is considered to be an element of a set
U = {u1, . . . , u`}, interpreted as a set of possible realizations of an uncertain utility function. Each
utility function uj ∈ U has a probability Pr[u = uj ] = qj , j = 1, . . . , `. This is marked in Figure 1
as preference information and probability distribution of utility function.Considered setting 

Technical information 
about the performance 

Preference 
information 

Conjoint probability distribution  
on values of the objective function 

Probability distribution  
on utility functions 

Probability distribution  
on objective functions  

/ utility functions 

Each solution is represented by 
the probability distribution  

of expected utilities 

Decision under 
uncertainty 

Figure 1: Main idea underlying the proposed methodology

3.1 A Simple Example
Consider a simple example, with n = 2 and X = [0, 1]2, so that the decision input to the objective
functions is a vector x = (x1, x2) composed of two decision variables.

3.1.1 Performance Uncertainty

Let us measure the performance of x in two dimensions, i.e., m = 2, so that f : R2 → R2 with
f = (f1, f2) for each objective realization. Moreover, consider k = 3 uncertain realizations of the
objective function, denoted by F = {f1, f2, f3}, with probabilities p = (p1, p2, p3) = (0.5, 0.2, 0.3),
and taking the following form:

f1(x) := (f11 (x1, x2), f12 (x1, x2)) = (x1, x2)

f2(x) := (f21 (x1, x2), f22 (x1, x2)) = (
√
x1, 3
√
x2)

f3(x) := (f31 (x1, x2), f32 (x1, x2)) = (x21, x
3
2).

Note: Alternatively, supposing that the values taken by the objective function in each realization
depend on the value taken on a basic reference realization (for example the mean value in case of an
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estimation through a Bayesian process) one can define the performance set Y := {f(x) : x ∈ X} ⊂
Rm and then use a transformation φh : Rm → Rm for each possible realization h = 1, . . . , k, so that
for each y = f(x) ∈ Y we can also write φh(y) = φh(y1, y2) or φh(f1(x), f2(x)) = (fh1 (x), fh2 (x)).
For instance, in the considered example, we can take as a basic reference realization f1(x) =
f1(x1, x2) = (f1(x1, x2), f2(x1, x2)) = (y1, y2) = (x1, x2), and for each realization h = 1, 2, 3,
suppose:

• φ1(y) = φ1(y1, y2) = (y1, y2)
or φ1(f(x)) = φ1(f1(x), f2(x)) = (f11 (x), f12 (x)) = (f1(x), f2(x)),

• φ2(y) = φ2(y1, y2) = (
√
y1, 3
√
y2)

or φ2(f(x)) = φ2(f1(x), f2(x)) = (f21 (x), f22 (x)) = (
√
f1(x), 3

√
f2(x)),

• φ3(y) = φ3(y1, y2) = ((y1)2, (y2)3)
or φ3(f(x)) = φ2(f1(x), f2(x)) = (f31 (x), f32 (x)) = ((f1(x))2, (f2(x))3).

3.1.2 Preference Uncertainty

Suppose that we have a probability distribution on a set of ` = 4 utility functions describing the
preference information as follows:

q1 = 0.4 : u1(y) = 0.3y1 + 0.7y2,

q2 = 0.3 : u2(y) = 0.5y1 + 0.5y2,

q3 = 0.2 : u3(y) = 0.8y1 + 0.2y2,

q4 = 0.1 : u4(y) = 0.9y1 + 0.1y2,

where q1, q2, q3, q4 are probabilities of realization of these utility functions.

3.1.3 Expected Utility and Variance of a Single Solution

In the following, we assume that the probability distributions of performance information and
utility functions are independent from each other. Therefore, the joint probability distribution on
the product space F × U assigns to each pair (f i, uj) the probability πij = pi · qj shown in the
following matrix:

Π =


π11 π21 π31
π12 π22 π32
π13 π23 π33
π14 π24 π34


T

=


0.20 0.08 0.12
0.15 0.06 0.09
0.10 0.04 0.06
0.05 0.02 0.03


T

For each decision x and each realization of its performance f i in F , one can compute the utility
value uj(f i(x)) that can be presented in the form of a matrix U(x) with elements uj(f i(x)) for i
and j.

U(x) =

u1(f1(x)) u2(f1(x)) u3(f1(x)) u4(f1(x))
u1(f2(x)) u2(f2(x)) u3(f2(x)) u4(f2(x))
u1(f3(x)) u2(f3(x)) u3(f3(x)) u4(f3(x))


Assuming that x = (0.5, 0.7), one can compute the entries of matrix U(x), getting:

U(0.5, 0.7) =

0.6400 0.6000 0.5400 0.5200
0.8337 0.7975 0.7433 0.7252
0.3151 0.2965 0.2686 0.2593


In order to compute the expected utility value E(u(f(x)) of decision x, we first need to compute
the matrix:

V(x) = U(x)×Π = [
(
uj(f i(x) · πi,j

)
i=1...,k
j=1,...,`

].

In our example, we get:

V(0.5, 0.7) =

0.1280 0.0900 0.0540 0.0260
0.0667 0.0479 0.0297 0.0145
0.0378 0.0267 0.0161 0.0078


3



Then, the expected utility value E(u(f(x))) is obtained as:

E(u(f(x))) =

k∑
i=1

∑̀
j=1

uj(f i(x)) · πij . (1)

In our example, for x = (0.5, 0.7), the expected utility value is E(u(f(0.5, 0.7))) = 0.5452.
The variance is given by:

σ2(u(f(x))) =

k∑
i=1

∑̀
j=1

(uj(f i(x))− E(u(f(x))))2 · πij , (2)

which, in our example, gives σ2(u(f(x))) = 0.0339.

In general, the DM will try to maximize the expected value E(u(f(x))) and to minimize the
variance of the selected solution σ2(u(f(x))). This principle can be applied in different procedures
to select a solution x from a set of feasible solutions X ∈ Rn, such as:

• select a solution x ∈ X with the maximum expected utility value E(u(f(x))) provided that
its variance σ2(u(f(x))) is not greater than a given threshold σ2∗;

• select a solution x ∈ X with the minimum variance σ2(u(f(x))) provided that its expected
utility value is not smaller than a given threshold E∗;

• select a solution x ∈ X maximizing a scoring function S(E(u(f(x))), σ2(u(f(x)))) being not
decreasing with respect to the expected utility value E(u(f(x))) and not increasing with
respect to the variance σ2(u(f(x))), as it is the case of

S(E(u(f(x))), σ2(u(f(x)))) = E(u(f(x)))− λ · σ2(u(f(x)))

where λ ≥ 0 is a coefficient representing a DM’s aversion to risk.

Let us apply the above procedures to a set of feasible solutions X = {x1, x2, x3, x4}, where

• x1 = (0.5, 0.7),

• x2 = (0.8, 0.4),

• x3 = (0.4, 0.8),

• x4 = (0.9, 0.2).

Let us observe that solution x1 is the same as solution x considered in the above simple example.
Computing the expected utility value and the variance for each solution from X we get

• E(u(f(x1))) = 0.5452, σ2(u(f(x1))) = 0.0339,

• E(u(f(x2))) = 0.5768, σ2(u(f(x2))) = 0.0350,

• E(u(f(x3))) = 0.5496, σ2(u(f(x3))) = 0.0323,

• E(u(f(x4))) = 0.5643, σ2(u(f(x4))) = 0.0377.

Consequently:

• if the DM wants to select a solution x ∈ X with the maximum expected utility value
E(u(f(x))) provided that its variance σ2(u(f(x))) is not greater than the threshold (σ∗)2 =
0.0340, then solution x3 is selected;

• if the DM wants to select a solution x ∈ X with the minimum variance σ2(u(f(x))) provided
that its expected utility value is not smaller than the threshold E∗ = 0.55, then solution x2
is selected;

• if the DM wants to select a solution x ∈ X maximizing a scoring function

S(E(u(f(x))), σ2(u(f(x)))) = E(u(f(x)))− 2 · σ2(u(f(x))),

then we get
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– S(E(u(f(x1))), σ2(u(f(x1)))) = 0.4773,

– S(E(u(f(x2))), σ2(u(f(x2)))) = 0.5068,

– S(E(u(f(x3))), σ2(u(f(x3)))) = 0.4850,

– S(E(u(f(x4))), σ2(u(f(x4)))) = 0.4890,

so that solution x2 is selected.

Another problem that can be considered in this context is the following. Suppose the DM wants
to select one solution from X ⊆ Rn, which would maximize the expected utility value E(u(f(x)))
and minimize the variance σ2(u(f(x))), taking into account a number of constraints concerning
decision variables hs(x) ≤ 0, s = 1, . . . , S. Formally, this problem can be formulated as follows:

maximize: E(u(f(x)))

minimize: σ2(u(f(x)))

subject to the constraints

x ∈ X, (3)
hs(x) ≤ 0, s = 1, . . . , S. (4)

Obviously, in general, it is not possible to get an optimum value of E(u(f(x))) and σ2(u(f(x)))
for the same feasible x. Instead, one gets a set of Pareto-optimal solutions x, i.e., all solutions
x ∈ X satisfying hs(x) ≤ 0, s = 1, . . . , S, for which there does not exist any other solution x ∈ X
satisfying hs(x) ≤ 0, s = 1, . . . , S, having not worse expected utility value E(u(f(x))) and not
worse variance σ2(u(f(x))), with at least one of the two being better, that is

E(u(f(x))) > E(u(f(x))), (5)
σ2(u(f(x))) ≤ σ2(u(f(x))) (6)

or

E(u(f(x))) ≥ E(u(f(x))), (7)
σ2(u(f(x))) < σ2(u(f(x))). (8)

Coming back to our example, we have X = [0, 1]2, and let us consider the constraint h(x) =
x1 + x2 − 1.25 ≤ 0. Taking into account the set of objective functions F and the set of utility
function U with respective probability distributions p and q, generating the conjoint probability
distribution Π on F ×U introduced above, we can get a set of representative Pareto-optimal solu-
tions presented in Table 1.

3.1.4 Expected Utility Value and Variance of a Set of Solutions

Suppose we have a set of solutions X = {x1, . . . , xr, . . . , xt} ⊆ Rn. In this case, it is possible to
compute the expected utility value and the variance of this population of solutions, as follows:

E(u(f(X)) =

t∑
r=1

k∑
i=1

∑̀
j=1

uj(f i(xr)) · πij (9)

σ2(u(f(X))) =

t∑
r=1

k∑
i=1

∑̀
j=1

(uj(f
i(xr))− E(u(f(X))))2 · πij (10)

The expected utility value E(u(f(X))) and the variance σ2(u(f(X))) can be computed using
expected utility values and variances of particular solutions in the population, as well as covariances
between these solutions:
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Table 1: A representation of Pareto-optimal solutions

x1 x2 Expected value Variance
0.388 0.862 0.580 0.030
0.351 0.899 0.585 0.031
0.314 0.936 0.592 0.031
0.302 0.948 0.594 0.032
0.292 0.958 0.597 0.032
0.284 0.966 0.598 0.033
0.276 0.974 0.600 0.033
0.270 0.980 0.602 0.034
0.263 0.987 0.603 0.035
0.258 0.992 0.605 0.035
0.252 0.998 0.606 0.036
0.250 1.000 0.607 0.036

E(u(f(X))) =

t∑
r=1

E(u(f(xr))) (11)

σ2(u(f(X))) =

t∑
r=1

σ2(u(f(xr))) + 2
∑
r<s

σ(u(f(xr)), u(f(xs))) (12)

where σ(u(f(xr)), u(f(xs))), r, s = 1, . . . , t, r < s, is the covariance between u(f(xr)) and u(f(xs)),
that can be computed as follows:

σ(u(f(xr)), u(f(xs))) =

k∑
i=1

∑̀
j=1

(uj(f
i(xr))− E(u(f(xr)))) · (uj(f i(xs))− E(u(f(xs)))). (13)

The concepts of the expected utility value and the variance of a set of solution can be applied
in multi-objective optimization algorithms with a different aim, for example:

• find a subset of solutions Y ⊂ X of a given cardinality q having the maximum expected
utility value E(u(f(Y ))), provided that its variance σ2(u(f(Y ))) is not greater than a given
threshold σ2; the subset Y can be found by solving the following 0−1 quadratic programming
problem:

maximize:
t∑

r=1

yrE(u(f(xr)))

subject to the constraints
t∑

r=1

yrσ
2(u(f(xr))) + 2

t−1∑
r=1

t∑
s=r+1

yrysσ(u(f(xr)), u(f(xs))) ≤ σ2, (14)

t∑
r=1

yr = q, (15)

yr ∈ {0, 1}, r = 1, . . . , t; (16)

the optimal subset Y will be composed of q solutions xr ∈ X with yr = 1;

• find a subset of solutions Y ⊂ X of a given cardinality q having the minimum variance
σ2(u(f(Y ))), provided that the its expected value E(u(f(Y ))) is not smaller than a given
threshold E; the subset Y can be found by solving the following 0−1 quadratic programming
problem:

minimize:
t∑

r=1

yrσ
2(u(f(xr))) + 2

t−1∑
r=1

t∑
s=r+1

yrysσ(u(f(xr)), u(f(xs)))
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subject to the constraints

t∑
r=1

yrE(u(f(xr))) ≥ E, (17)

t∑
r=1

yr = q, (18)

yr ∈ {0, 1}, r = 1, . . . , t; (19)

again, the optimal subset Y will be composed of q solutions xr ∈ X with yr = 1.

Coming back to our example, let us consider again the solutions from the setX = {x1, x2, x3, x4},
and let us compute the covariances σ(u(f(xr)), u(f(xs))), obtaining the following variance-covariance
matrix Σ(X) = [σ(u(f(xr)), u(f(xs)))], where σ(u(f(xr)), u(f(xr))) = σ2(u(f(xr))):

Σ(X) =


0.0339 0.0258 0.0318 0.0157
0.0258 0.0350 0.0182 0.0334
0.0318 0.0182 0.0323 0.0064
0.0157 0.0334 0.0064 0.0377


Let us suppose that the DM wants to select a subset of solutions Y ⊂ X with cardinality q = 3,

having the maximum expected utility value E(u(f(Y ))). Solving the 0-1 quadratic programming
problem presented above, and without considering any constraint on the variance σ2(u(f(Y ))), we
get that the DM has to select the subset Y1 = {x2, x3, x4} with expected utility value E(u(f(Y1))) =
1.6907 and variance σ2(u(f(Y1))) = 0.2211.

If, in turn, the DM would like to select a subset of solutions Y ⊂ X with cardinality q =
3, having the minimum variance σ2(u(f(Y ))), then, by solving the corresponding 0-1 quadratic
programming problem presented above, and without considering any constraint on the expected
value E(u(f(Y ))), the DM would get the subset Y2 = {x1, x3, x4} with expected utility value
E(u(f(Y2))) = 1.6591 and variance σ2(u(f(Y2))) = 0.2118.

Suppose now that the DM would like to select a subset of solutions Y ⊂ X with cardinality
q = 2, having the maximum expected utility value E(u(f(Y ))) but under the condition that
the variance σ2(u(f(Y ))) is not greater than 0.215. In this case, solving the corresponding 0-1
quadratic programming problem, the DM would get the subset Y3 = {x3, x4} with expected utility
value E(u(f(Y3))) = 1.1139 and variance σ2(u(f(Y3))) = 0.0828.

Finally, suppose that the DM would like to select a subset of solutions Y ⊂ X with cardinal-
ity q = 2, having the minimum variance σ2(u(f(Y ))) but under the condition that the expected
utility value E(u(f(Y ))) is not smaller than 1.1. In this case, the DM would get again the subset
Y4 = {x3, x4}.

The above two problems of selecting a subset of solutions of a given cardinality maximizing
the expected utility value with a constraint on the variance, or minimizing the variance with
a constraint on the expected value, can be interpreted as a discrete version of the Markowitz
portfolio selection problem in the context of multi-objective optimization. It is sensible to consider
also the classic continuous Markowitz portfolio selection problem which consists in searching for a
vector

y = [y1, . . . , yt], yr ≥ 0, r, . . . , t,

t∑
r=1

yr = 1,

that maximizes the expected utility value

E(u(f(y))) =

t∑
r=1

yrE(u(f(xr)))

subject to the constraint that the variance σ2(u(f(y))) is not greater than a given threshold σ2,
that is

σ2(u(f(y))) =

t∑
r=1

yrσ
2(u(f(xr))) + 2

t−1∑
r=1

t∑
s=r+1

yrysσ(u(f(xr)), u(f(xs))) ≤ σ2.
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The classic Markowitz portfolio selection problem can also be formulated as minimization of
the variance σ2(u(f(y))) under the constraint that the expected utility value E(u(f(y))) is not
smaller than a given threshold E.

Coming back to our example, let us suppose that the DM wants to compute the vector y =
[y1, . . . , y4] having the maximum expected utility value E(u(f(y))) but under the condition that
the variance σ2(u(f(y))) is not greater than 0.o25. In this case, the optimal vector is

y1 = [0 0.4223 0.3487 0.2289],

with its corresponding expected utility value E(u(f(y1))) = 0.5644 and variance σ2(u(f(y1))) =
0.025.

Instead, if we suppose that the DM wants to compute a vector y = [y1, . . . , y4] having the
minimum variance σ2(u(f(y))) but under the condition that the expected utility value E(u(f(y)))
is not smaller than 0.56, then the optimal vector is

y2 = [0 0.1599 0.4285 0.2118]

with its corresponding expected utility value E(u(f(y2))) = 0.56 and variance σ2(u(f(y2))) =
0.0224.

Let us finally remark, that the value of yr, r = 1, . . . , t, can be interpreted as a score assigned
by a fitness function to the corresponding solution xr in an evolutionary optimization algorithm,
such that the greater the value of yr the more probably xr should be selected to generate a new
solution.

3.1.5 Heat map visualization of averages and variances

For a visualization of the situation that is described above consider Figure 2. For any two-
dimensional input/decision/design/output variable x = (x1, x2) in the domain [0, 1] × [0, 1], we
can compute the mean and variance of the l · k (here, 3 · 4 = 12) entries of the resulting matrix
U(x) or U(y). Then, the figure on its left and right side shows the thus computed mean values
and variances for variables x or y of a discretized grid on [0, 1]× [0, 1].

Figure 2: Heat map visualization of averages (on the left) and variances (on the right)

4 Application to Sea-Level Rise and Storm Surge Projections
This section describes a real-world application regarding the deep uncertainties in sea-level rise and
storm surge projections. This example represents a probabilistic generalization of the classical Van
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Dantzig decision analytical application where the decision is to choose the level of increase in dike
height to reduce flood risk [?]. The two objectives are probabilistic as a function of uncertainties
in sea level rise due to climate change and local effects of the geophysics of storm surge (i.e., two
different but interdependent geophysical models). Figure 3 illustrates the original deterministic
Van Dantzig baseline, the mean trade-off between flood risk and investment, as well as the relative
locations of the minimum net present values for investment. The challenge as emphasized in the
log scale zoomed view is the mean Pareto front would not provide a DM an understanding of
the severe variance in the potential outcomes for a given investment. For example, working with
the mean trade-off an investment 800 Million US Dollars intended to provide a 1 in 10,000 year
level of flood protection has a significant residual probability of dramatically less protection (severe
damages and potential loss of life). This probabilistic Pareto space context poses a challenge to
decision making, particularly given the potential uncertainties in preferences or risk aversion for
the residual risks. It then motivates the question of understanding the potential joint probabilistic
outcome of uncertain Pareto performance and uncertain DM’s preferences.

7

How	do	methodological	choices	impact	
decision	recommendations?

Tail-area	behavior	yields	a	severe	
variance	in	the	reliability	of	a	given	

investment

Figure 3: Real-world application about uncertainty in technical information (adapted from [?])

5 Open Questions
In this report, we proposed a novel approach for interactive multi-objective optimization taking
into account uncertainty referring to both the evaluations of solutions by objective functions as well
as the preferences of the decision maker. We envisage the following directions for future research.

Firstly, we aim at developing methods for elicitation of probability distributions on objective
performances and on utility functions. Secondly, we will propose some procedures for robustness
analysis that would quantify the stability of results (utilities, ranks, and pairwise relations) obtained
in view of uncertain performances and preferences. Thirdly, when aiming to select a set of feasible
options, we will account for the interactions between different solutions. Fourthly, we will integrate
the proposed methods with evolutionary multi-objective optimization algorithms with the aim
of evaluating and selecting a population of solutions. Fifthly, we plan to adapt the introduced
approach to a group decision setting, possibly differentiating between two groups of decision makers
being responsible for, respectively, setting the goals and compromising these goals based on different
utilities. Finally, we will apply the proposed methodology to real-world problems with highly
uncertain information about the solutions’ performances and decision makers’ preferences.
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