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Abstract—In this article we propose a new dynamic multi-
objective optimization problem. This dynamic Distance Mini-
mization Problem (dDMP) functions as a benchmark problem
for dynamic multi-objective optimization and is based on the
static versions from the literature. The dDMP introduces a useful
property and challenge for dynamic multi-objective algorithms.
Not only the positions of the Pareto-optimal solutions in the
search space change over time, but also the complexity of the
problem can be adjusted dynamically. In addition the problem is
based on a simple geometric structure, which makes it useful
to visualize the search behaviour of algorithms. We describe
the basic principles of the problem, and introduce the possible
dynamic changes and their implementation and effects of the
Pareto-optimal areas. Our experiments show how a possible
instance of the dynamic DMP can be defined and how different
algorithms react to the dynamic changes.

I. INTRODUCTION

In recent years, many-objective and large scale problems
have been studied in the area of evolutionary multi-objective
optimization (EMO). For evaluating the performance of EMO
algorithms, scalable test problems have been introduced. In
addition to the field of static multi-objective optimization, an
interest in research lies also in dynamic environments. Various
applications in the real world deal with dynamically changing
systems, and consequently there has been research to solve
(multi-objective) optimization problems, when the problems’
properties change over time. One challenge in evaluating the
solutions of such problems for large number of objectives
concerns the visualization of the results.

Distance Minimization Problems (DMP) have been intro-
duced as (static) scalable test problems which can be eas-
ily visualized in the objective space. This kind of problem
contains several predefined objective points (the same as the
number of objectives) in the decision space. The goal is to find
the solutions in the decision space which have the minimum
distances to all of these objective points.

In previous research this problem was used to visually
demonstrate certain search behaviour of algorithms [1], which
is a desirable property of a benchmark function to aid the de-
sign and analysis of new algorithms. However, other research
also showed that changing certain parameter, like the used
distance metric, can result in a drastic change in complexity
and structure of the Pareto-optimal sets [2].

In this work, we propose a dynamic version of the Distance
minimization problem as a benchmark for dynamic multi-
objective optimization. This problem is based on the existing
static DMP and aims to make most aspects of the DMP
changeable over time. This new dynamic problem has the
advantage of being easy to understand for algorithm designers
as well as easily visualized to understand algorithms’ search
behaviour. Finally, unlike some other dynamic benchmark
problems, by changing the distance metric, the problem’s
complexity changes drastically, which can be an interesting
challenge to optimization algorithms.

The remainder of this paper is structured as follows. First,
we will give a short overview of existing research in dynamic
multi-objective benchmarks and the research about the static
version of the DMP. In Section III we describe the static DMP
and its properties. Section IV deals with the proposed changes
and extensions to the problem and discusses the implementa-
tion and implications on the problems properties. Finally, we
will show experimental data to examine the search behaviour
of two dynamic algorithms exemplary on an instance of the
new dynamic problem.

II. RELATED WORK

Some of the existing static benchmarks like the ZDT-
problems [3] are scalable in terms of the number of variables
while others like the DTLZ [4] or WFG [5] are scalable both in
terms of the number of variables and objectives. Similar to the
benchmark problems for static optimization, multiple dynamic
benchmark problem families have been proposed like the FDA
[6], DTF [7], the dMOP-functions [8] or the T1- to T4-function
[9]. Some of these are extensions of previous static versions. A
detailed review of dynamic benchmark functions can be found
in [10].

A basic version of the Distance Minimization Problem
(DMP) was introduced in [11] and [12] and has been re-
formulated in other research since then. Schütze et al. first
formulated the problem for arbitrary numbers of variables and
objectives [13].

Different versions of the DMP, sometimes also with multiple
Pareto-optimal areas, were used in [1], [2], [14], [15] and
[16]. In [15], an instance of a DMP was created from a
real-world map to determine optimal living positions within
a city, using the Euclidean metric as an approximation of
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the distances within the map. In [1] Ishibuchi et al. used the
DMP to visually examine the search behaviour of algorithms
and applied existing algorithms such as NSGA II, SPEA2
and MOEA/D to problem instances of 2 and 4 objectives
with up to 1000 variables. They found that the increase in
the number of decision variables had a negative effect on the
diversity of solutions, and showed that the solutions converged
towards the Pareto-front with a low diversity and spreading out
more along the front once it was reached. This research was
extended in [16] to 6- and 8-objective instances, and showed
that an increase in the number of decision variables has a large
influence on solution quality compared to the increase in the
number of objectives.

Most previous studies on the Distance Minimization Prob-
lem have considered Euclidean distance measurement, with the
exceptions of [13], [17] and [2]. In real world applications,
the assumption that distances are Euclidean might not be a
realistic approximation for the actual distances. For instance
in logistic applications such as in robot-driven warehousing
applications, or grid-like scenarios like street networks, often
other measurements are employed.

The idea to use different metrics in the distance measure-
ment of this family of problems was initially suggested in
[17]. The work in [2] provided detailed analysis of the specific
properties of the problem when using Manhattan-distances. It
was shown in these works that the Manhattan metric drastically
changes the properties of the DMP and adds to the difficulty of
the problem. Using the Manhattan metric, the DMP provides
a hard to solve problem even with only two decision variables
and 3 objectives for the NSGA-II [18] and the SMPSO [19]
algorithms [2].

III. PROBLEM DESCRIPTION

In this section we describe the static Distance Minimization
Problem (DMP) and its properties. We start with a description
of the basic static problem as introduced in [2], and propose
the extension to a dynamic problem and its implications in
Section IV.

The static DMP is a scalable multi-objective optimization
problem which contains a set of predefined so-called objective-
points or target-points {~Z1, .., ~Zm} with coordinates ~Zi =
(zi1, .., zin)

T in the n-dimensional decision space. The number
of objective-points corresponds to the number of objectives
(m). The goal of the DMP is to find a set of solutions (∈ Rn)
in the decision space which have a minimum distance to all
of the objective-points. The general DMP is formulated as
follows:

min f(~x) = (f1(~x), ..., fm(~x))T

s.t. fi = dist(~x, ~Zi) ∀i = 1, ..,m

xj ≤ xmax ∀j = 1, .., n

xj ≥ xmin ∀j = 1, .., n

(1)

The central aspect in the DMP is the function for calculating
the distance (dist(~x, ~Zi)) between a solution vector ~x and the

objective-point ~Zi. Most of the previous research has used the
Euclidean metric for measuring the distances in the decision
space. This metric refers to the naturally shortest distance. It
is induced by the p2 norm ‖ ~a ‖2=

√∑n
i=1 |ai|2 and will

therefore also be addressed as the p2 metric in this paper. It
gives the distance of two points as:

dist2(~a,~b) := ‖ ~a−~b ‖2 =

√√√√ n∑
i=1

|ai − bi|2 (2)

Although this might be the most natural perception of
distance, it is not the only one that occurs in applications and
theory. Some other work has used the Manhattan metric (also
called p1 metric), which is induced by the p1 norm [2], [17].
With the Manhattan metric, the distances between two points
in the decision space is measured as follows:

dist1(~a,~b) := ‖ ~a−~b ‖1 =
n∑

i=1

|ai − bi| (3)

In addition to those two metrics, we can generalize the DMP
for any metric induced by the p-norm

dist(~a,~b) :=

[
n∑

i=1

|ai − bi|p
] 1

p

(4)

where p can be any real number ≥ 1. In the remainder of this
work, we will focus on metrics induced by p-norms, although
in theory every metric can be used. The advantage of the p-
norms is, that by changing just one parameter p, the problem’s
Pareto-front can be changed. This is regarded a one type of
dynamic change in the proposed dynamic DMP and will be
examined later in Subsection IV-B.

A. Pareto-fronts of the DMP

It has been shown in the literature [1], [2] that in the case
of the Euclidean Distance measurement (p = 2), the whole
Pareto-optimal solution set P (in the decision space) is defined
by the convex hull of the objective-points in the search space.
For instance, suppose m = 3 objectives and n = 2 decision
variables are used with the Euclidean metric, we obtain the
Pareto-optimal solutions P as shown in Fig. 1.

Regarding the Manhattan metric based DMP (p = 1), it
was shown in [2], that the Pareto-optimal front can not be
calculated in the same way any more. The Manhattan-metric
DMP shows degenerated Pareto-fronts as well as a domination
structure that makes it very difficult for Pareto-dominance
based algorithms to approach the true Pareto-front.

To obtain the Pareto-optimal solution sets of a Manhattan-
metric DMP, a more complicated procedure is used to obtain
the fronts analytically for certain 2-dimensional instances of
the problem. For detailed information on how these fronts can
be obtained, please refer to [2]. In Fig. 2, the Pareto-optimal
sets in the decision space for 2-dimensional problem with m =
3 objectives is shown. For the three objective-points Z1, Z2, Z3

the Euclidean (a) and the Manhattan metric (b) is used as the
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Fig. 1. Decision space of the Euclidean DMP for m = 3 objectives and
n = 2 decision variables. The convex triangle (P) is Pareto-optimal.

(a) Euclidean metric (b) Manhattan metric

Fig. 2. Pareto-optimal solution in a 2-dimensional decision space with m = 3
objectives.

distance measure and the Pareto-optimal solutions are shown
in the figures.

An essential insight gained from [2] is also, that the com-
plexity of the DMP increases when the Manhattan metric is
used instead of the Euclidean one. In the mentioned study, the
NSGA-II, MOEA/D and SMPSO algorithms were not able to
approximate the Pareto-optimal front of even a 2-dimensional
problem when Manhattan distances were used. On the other
hand, in multiple other studies [1], [14], [15] and [16] it can
be seen that the respective Euclidean problem is easy to solve
for current algorithms.

IV. THE DYNAMIC PROBLEM

In this section we will go into detail on the different types of
changes and their implications for the DMP. In the following,
we will refer to the dynamic DMP as dDMP. Since a dynamic
optimization problem changes its properties over time, the
DMP which was shown in Equation 1 is extended by a time-
component t as follows.

min f(~x, t) = (f1(~x, t), ..., fm(t)(~x, t))
T

s.t. fi(~x, t) = dist(~x, ~Zi(t), t) ∀i = 1, ..,m(t)

xj ≤ xmax ∀j = 1, .., n

xj ≥ xmin ∀j = 1, .., n
(5)

The parameter t represents the time-component in real-
world applications. In the context of this work we will make t
dependent on the number of already used function evaluations
for optimizing the problem. This means, which each time
the problem is evaluated by an optimizer, a function will
map this number of evaluations to a time-parameter t that
defines certain (periodic) changes of the DMP. In this work, we
propose the dDMP with four different time-dependent changes
to the DMP:

1) Change the position of objectives by
a) Rotation
b) Translation

2) Change the distance metric
3) Change the number of decision variables
4) Change the number of objectives
In the following, we will go into detail on each of these

cases and describe the change in the problem’s difficulty and
other properties.

A. Change of Location

The most natural change that we can make based on the
geometric properties of the problem is the change of the
positions of the objective-points in the decision space. Since
they have a fixed location in the n-dimensional search space
for the static DMP, we can use translation or rotation of all
points Zi, i = 1..m to move the objective-points, and thereby
the Pareto-optimal set P to different locations or rotate it. As
a result, solutions which were Pareto-optimal before a change
(at time t − 1) might not be optimal afterwards (at time t)
any more and vice versa. This behaviour in a 2-dimensional
space is visualized in Fig. 5. In the following we describe
these changes formally.

1) Rotation: Rotation can be achieved by applying a n-
dimensional rotation matrix R̂ to the original objective-points
at time t = 0 to achieve the locations at timestep t. For a
2-dimensional search space this can be expressed as

Zi(t) := R̂ · Zi(0) (6)

with

R̂ :=

(
cos(α(t)) − sin(α(t))
sin(α(t)) cos(α(t))

)
(7)

In theory, each Zi can be multiplied with its own rotation
matrix R̂i. However, for simplicity, we will assume all Zi are
rotated with the same rotation matrix R̂. The parameter for
the rotation α(t) will be subject to change over time, so that
each new objective-point is computed out of the original one
at t = 0.

An alternate approach for practical reasons can also be ap-
plied in for rotation. Since large-dimensional rotation matrices
might be hard to handle, it is also possible to define the original
coordinates at time t = 0 in a polar coordinate system. In
this way, the original positions of each Zi consists of n − 1
angles φ1, .., φn−1 which define the orientation of the point
in the space and one number r that defines the distance of it
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from the origin. This has the advantage, that rotation can be
applied in an easy way by making the coordinates φj directly
dependent on the time t, i.e. we obtain for the Zi:

Zi :=


r

φ1(t)
...

φn−1(t)

 (8)

With this definition, we can directly influence the rotation
in any n-dimensional decision space in an easy way. The only
additional operation necessary in this case is the transforma-
tion back to the Cartesian coordinate system before adding the
translation vector (see the following subsection).

2) Translation: The second movement of the objective-
points is the translation, which can be expressed as a transla-
tion vector v(t) that adds to the original coordinates of each
point at t = 0. Similar to the rotation case, one could define
one translation function vi(t) for every Zi. However, in order
to shift the whole Pareto-optimal set by a certain amount
without changing its shape, we can add the same translation
vector v(t) to every objective point. Formally, the translation
is described by:

Zi(t) := Zi(0) + v(t) (9)

B. Change of Distance Metric

One of the most interesting things to change in the dDMP
is the used metric for measuring the distance. As mentioned
before, it was shown in the literature that for instance the
Manhattan-metric DMP has different and more complicated
Pareto-optimal sets than the same problem using the Euclidean
distance. To make soft transitions between different metrics in
the dDMP, we limited this work to the usage of the p-norm
induced metrics as shown in Equation 4. To account for the
change, we make the parameter p time-dependent, i.e. we use
p(t).

C. Change the Number of Variables

Another implemented change regards the number of deci-
sion variables. This means that during the optimization of the
problem, the dimensionality of the search space changes. For
an optimization algorithm which optimizes the 2-dimensional
problem, it might suddenly be confronted with a 3-dimensional
search space (see Fig. 3). This sudden increase in the dimen-
sionality might provide a great challenge for optimization al-
gorithms, especially when the location of the objective-points
changes as well, as they are placed in a higher-dimensional
space.

The challenge for the practical implementation is here,
that most black-box optimizers are not meant to deal with
the change in dimensionality. To implement an insertion or
deletion of decision variables, the optimization algorithm has
to be adapted as well to recognize the change and allocate
new space for the additional variables as well as find initial
values for the new variables for all existing solutions in the

(a) Two decision variables (b) Three decision variables

Fig. 3. Change of the Pareto-optimal solutions in the decision space with 3
objectives in response to an increase in the number of variables.

population. As we are aiming to provide a black-box problem,
we do not expect this kind of behavior from algorithms.
Therefore, we implemented this change in the following way.

The dDMP is initialized as usual with a fixed maximum
number of decision variables n. During the dynamic optimiza-
tion procedure, not all of the variables are actually used in
the evaluation function of the problem. The parameter n(t)
defines how many of the total decision variables are actually
influencing the distance function at a given time t. Together
with the time-dependent metric we therefore use the distance
function shown in Equation 4, where only the dimensions up
to n(t) are actually evaluated.

For instance, we define the problem in the initialization (t=0)
as a 3-dimensional problem with 3 objectives. Therefore we
have n = 3 and m = 3 and the optimizer searches for a convex
hull of the 3 objective-points in the 3-dimensional decision
space at time t = 0 (i.e. n(t = 0) = 3). As the optimization
continues, the time parameter will alter the amount of relevant
variables. At time t = 1 we could for instance set n(t =
1) = 2, so that only the first two variables are taken into
account when calculating the distance from a solution to each
objective-point. In later Iterations, this could change again, so
that n(t) might be alternating between 2 and 3. It is possible to
also define which of the variables should be the active ones (for
instance through a binary vector indicating for each variable
if it is active or not). For simplicity, in this work we define the
number of active variables in order starting with x0 to xn(t).

D. Change the Number of Objectives

Finally, we can change the number of objectives of the opti-
mization problem. That is, we want to change for instance a 3-
objective problem into a 2-objective problem by removing one
of the objectives. In a DMP, this corresponds to the removal
of an objective-point Zi. As a result, the dimensionality of
the objective space changes and this can have implication
for the convergence and diversity behaviour of algorithms.
Especially when the change goes in the other direction, and
an additional objective is added, the current population of
individuals might be unable to provide a good diversity in
the new, larger objective space. As an example, Fig. 4 shows
the change of the Pareto-optimal area (in the decision space)
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of a Euclidean DMP when one objective-point, Z4, is removed
from a 4-objective problem with 2 decision variables.

(a) Four objectives (b) Three objectives

Fig. 4. Change of the Pareto-optimal solutions in the decision space with
n = 2 variables, when a fourth objective point is added / removed.

Similar to the change of the number of variables, we
implement this change of the problem in a special way in
order to let algorithms treat this as a black-box problem.
The maximum number of objectives is specified beforehand
by the amount m given in the problem initialization. During
the process, objective-points can be “removed” by simply
changing their coordinates to be identical with one of the
other “remaining” objective-points. In this way, the Pareto-
optimal solutions set P that has to be found by the algorithm
equals the one that would arise in a problem with an actual
removed objective. Formally, this can be seen in Lines 2 and
3 of Equation 10.

E. Summary

Implementing all changes proposed in the last subsections,
we obtain the dynamic DMP (dDMP) as follows:

min f(~x, t) = (f1(~x, t), .., fm(t)(~x, t), .., fm(~x, t))T

s.t. fi(~x, t) = dist(~x, ~Zi(t), t) ∀i = 1, ..,m(t)

fk(~x, t) = f1(~x, t) ∀k = m(t) + 1, ..,m

xj ≤ xmax ∀j = 1, .., n

xj ≥ xmin ∀j = 1, .., n
(10)

with

dist(~x, ~Zi, t) :=

n(t)∑
j=1

|xj − Zi,j |p(t)
 1

p(t)

(11)

and

Zi(t) :=

(
cos(α(t)) − sin(α(t))
sin(α(t)) cos(α(t))

)
· Zi(0) + v(t) (12)

With numbers n and m for the (maximum) numbers of
variables and objectives set beforehand as in any other op-
timization problem, all changes that will occur during the
optimization are defined by the five functions n(t), m(t), α(t),
v(t) and p(t). In this way, we control the following properties:

• n(t) is the number of active variables. It controls the di-
mensionality of the search space. Changing n(t) changes
the Pareto-optimal set of solutions as well as the optimal
objective values.

• m(t) is the number of active objective functions. It con-
trols the dimensionality of the objective space. Changing
m(t) results in a different Pareto-optimal front as well as
different Pareto-optimal solution sets.

• α(t) defines the rotation of the objective-points starting
from its original values at t = 0. Rotation changes the
Pareto-optimal set of solutions and the objective values
(distances) of a current population to the objective points
Zi.

• v(t) is the translation vector, which controls the move-
ment of each objective point Zi in the decision space.
If all transitions are equal, i.e. v1(t) = v2(t) = ... =
vm(t) = v(t), the Pareto-optimal set changes in term of
the locations in the decision space, but the Pareto-optimal
solutions still have the same objective values before and
after the change.

• p(t) changes the used metric. This is the most interesting
change, since a change in the metric results in a change
in complexity. Changing p(t) can be used to make the
algorithm solve easy and hard problems in an alternating
fashion. For instance, from the literature we can derive
that Pareto-dominance based algorithms will face diffi-
culties with case p = 1.0 while the p = 2.0 instance is
quite easy to solve [2], [17].

V. EVALUATION

In this section we will briefly show the performance of some
dynamic multi-objective algorithms on the proposed dynamic
DMP. We will pick some of the changes introduced here and
show the reaction and performance of two dynamic algorithms
exemplary. Due to page limitation, we are not able to examine
every possible dynamic experimentally in this paper.

For the experiments, we use two dynamic optimization
algorithms. The first one is the DNSGA-II-A. It was proposed
by Deb et al. [20] and is an extension of the original NSGA-
II algorithm [21]. The key difference lies in the detection of
changes during the optimization. In addition to the normal
NSGA-II procedure, the DNSGA-II-A checks for a change
in the problem by reevaluating some solutions in the current
population. If their fitness values differ although the solution
was not changed, the algorithm assumes a change in the
optimization problem and reevaluates the whole population
to obtain up-to-date objective values. In addition, a part of the
population (e.g. 10%) are replaced by random new solutions,
to help starting new exploration of the search space. There
are two different version of the dynamic NSGA-II algorithm
called DNSGA-II-A and DNSGA-II-B. The difference lies in
the behaviour considering the replacement of existing solutions
in case of a detected change in the problem. DNSGA-II-A
replaces a part of the population with new (random) solu-
tions, whilst DNSGA-II-B uses mutated solutions of existing
problems and was described in [20] as the preferred method
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for problems that are only undergoing small changes. In this
work, we will solely use the DNSGA-II-A version.

The second algorithm we use is a dynamic version of the
SMPSO algorithm [19]. The SMPSO is a widely-used multi-
objective swarm optimizer, which was also used in previous
research about the static DMP [2]. To make it applicable to
dynamic environments, we equip the SMPSO with the same
mechanism of change-detection and reaction as the DNSGA-
II-A. This dynamic version will be called dSMPSO in this
work.

We perform experiments with four different instances, using
n = 2, 10, 50, 100 decision variables. For each experiment,
we performed 51 independent runs with a maximum number
of function evaluations of 100, 000. The necessary parameter
settings are as follows. The population sizes of all algorithms
are set to 100. The values for the amounts of solutions to
reevaluate and to redistribute randomly are taken from [20].
That is, the share of reevaluated solutions to detect change is
set to 10% of the population size and the share of randomly
added solutions in case of change is set to 20%. We use
Polynomial Mutation for both algorithm with a distribution
index of 20.0 and a mutation probability of 1/3. The DNSGA-
II-A uses an SBX crossover with a distribution index of 20.0
and a crossover probability of 0.9. For the higher-dimensional
instances (n = 50 and n = 100) the used mutation rate of 1/3
might seem relatively high. It was set in this way to enable
the algorithms to to perform a high exploration of the search
space after the problem changes.

For our experiments, we chose the following 3-objective
instances of the dynamic DMP. For changing the location of
the objective-points, we make use of the second approach
described in Subsection IV-A1 and implemented a rotation
of the objective-points by defining time-dependent values for
the polar-coordinates of the Zi (See Equation 8). The used
metric is p = 2. The following defines the time-dependent
objective-points of the problem instance. For every objective-
point i ∈ {1, ..,m}:

αi,k(t) =
2π

3
· (i− 1) +

π

6
· t ∀k ∈ {1, .., n− 1}

ri(t) = (5− i)− 1

6
|6− t|

vi,j =
1

2
|6− t| ∀j ∈ {1, .., n}

(13)

For the timestep we use the following formula:

t :=

⌊
#evaluations

4000

⌋
mod 12 (14)

Therefore, we obtain a periodic pattern with 12 different
positions of the objective-points. Due to space limitations, we
only show 4 out of these 12 situations exemplary in Fig. 5.

As quality indicators we use the Hypervolume rate (HVR),
which is the relation between Hypervolume of the population
and the Hypervolume of a sample of the true Pareto-front. The
second indicator is the Spread indicator as described in [18],

(a) t = 0 (b) t = 1

(c) t = 5 (d) t = 9

Fig. 5. Four of the 12 static subproblems that form the dynamic test instance.

where a smaller Spread value indicates a better distribution of
solutions.

A. Results

In this subsection we will present the results of these
experiments. The focus here lies just in the understanding
of the dynamic of the problem and the experiments are a
showcase of how the dDMP can be used to create a dynamic
instance and work with it.

TABLE I
CHANGE OF MEAN HVR BEFORE AND AFTER A CHANGE OF THE

PROBLEM. VALUES IN BRACKETS ARE STANDARD ERRORS.

n Algorithm before Change after Change ∆
DNSGA-II-A 0.933 (0.001) 0.897 (0.002) 0.036

2 dSMPSO 0.729 (0.009) 0.716 (0.009) 0.013
DNSGA-II-A 0.806 (0.009) 0.377 (0.039) 0.429

10 dSMPSO 0.368 (0.024) 0.342 (0.024) 0.026
DNSGA-II-A 0.028 (0.032) 0.0 (0.007) 0.028

50 dSMPSO 0.121 (0.026) 0.084 (0.025) 0.037
DNSGA-II-A 0.0 (0.003) 0.0 (0.0) 0.0

100 dSMPSO 0.0 (0.028) 0.0 (0.018) 0.0

To get an impression about the adaption of the algorithm
to the changes at different timesteps, we measure the HVR
during the optimization each time right before and right after a
change occurs. The mean HVR values before and after changes
over all runs are listed in Table I. The corresponding Spread
values are shown in Table II. The respective better performance
before and after changes and the least loss of HVR through
change are denoted in green and bold font. In addition to the
values in the tables, we show in Figs. 6 to 9 the development
of the HVR over time for the four different settings of n.
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TABLE II
CHANGE OF MEAN SPREAD BEFORE AND AFTER A CHANGE OF THE

PROBLEM. VALUES IN BRACKETS ARE STANDARD ERRORS.

n Algorithm before Change after Change ∆
DNSGA-II-A 0.785 (0.002) 0.679 (0.004) 0.106

2 dSMPSO 0.704 (0.011) 0.699 (0.011) 0.005
DNSGA-II-A 0.735 (0.005) 0.660 (0.014) 0.075

10 dSMPSO 0.709 (0.010) 0.708 (0.009) 0.001
DNSGA-II-A 0.697 (0.009) 0.713 (0.010) -0.016

50 dSMPSO 0.773 (0.011) 0.790 (0.010) -0.017
DNSGA-II-A 0.753 (0.011) 0.791 (0.014) -0.038

100 dSMPSO 0.946 (0.012) 0.943 (0.011) 0.003
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Fig. 6. Achieved HVR over time during optimization using n = 2 variables
and the Euclidean metric (p = 2.0).
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Fig. 7. Achieved HVR over time during optimization using n = 10 variables
and the Euclidean metric (p = 2.0).

The figures show the data of the single run that achieved the
median final HVR values.

The first interesting observation is, that throughout the
optimization, the HVR values obtained before a change (see
Table I) show small standard error values, especially the values
of the DNSGA-II-A. This indicates that the HVR values that
were achieved before a change of the problem can be achieved
again until the next change happens.

It was also to be expected, that the complexity of the prob-
lem increases with higher numbers of variables. Comparing
Figs. 6 and 7, we see that for n = 2 variables the algorithms
can achieve good performance values which are only slightly
disturbed by a change in the problem. On the other side, in
a 10-dimensional search space (Fig. 7), we observe not only
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Fig. 8. Achieved HVR over time during optimization using n = 50 variables
and the Euclidean metric (p = 2.0).
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Fig. 9. Achieved HVR over time during optimization using n = 100 variables
and the Euclidean metric (p = 2.0).
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Fig. 10. Achieved HVR of the optimal solutions over time during optimization
using n = 2 variables and the Manhattan metric (p = 1.0).

a lower overall performance, but more interestingly we also
observe a stronger decline in performance when changes occur.
To analyze this behaviour, it is easy to see that a rotation of
the Pareto-optimal area in a 2-dimensional space might result
in at least a part of the solutions to still be optimal (refer to the
different optimal regions in Fig. 5). However, in 3-dimensional



or even higher-dimensional space, a rotation might rotate the
orientation of the plane in which the optimal area lies. This can
easily result in none of the previous solutions being optimal
any more, thus, we see larger disturbances in the HVR.

For comparison, in Fig. 10 shows the HVR obtained over
time by a similar instance of the problem using the Manhattan
metric and n = 2 variables. We used 31 runs and slightly
different initial positions and rotations to account for the
special domination structure that arises in the problem. The
HVR over time of the median run shown in Fig. 10 is
calculated using only the Pareto-optimal solutions within the
population, since the Manhattan-metric DMP is known to have
a domination structure that will create many solutions close
to the optimal front easily without converging further.

From the large disturbances in HVR for both algorithms in
Fig. 10 as well as the overall low performance, we can see
that the complexity of the DMP with p = 1 in the static case
(refer to [2]) is also making the dynamic version a challenge.
A change in the problem causes the Pareto-optimal areas to
change their shape, which makes a large part of the population
become non-optimal afterwards.

Due to the limitation that there exists no analytic method
yet to obtain the Pareto-optimal sets for every value 1.0 ≤
p ≤ 2.0, we did not test a dynamic environment where p
changes during optimization yet, since the measurement of
the quality indicators would be difficult. However, from the
comparison of the two instances (Figs. 6 and 10) we can see
that the complexity of the problem changes with the metric
as claimed in Subsection IV-B. Consequently we observe in
these results that also the ability of the algorithms to adapt to
the changes of the problem varies.

VI. CONCLUSION

In this work we proposed a new benchmark function for dy-
namic multi-objective optimization algorithms. This dynamic
Distance Minimization Problem is based on the works of the
static version but makes some of its properties generic so they
can be changed over time. After describing the basic principles
of the problem, we described the possible dynamic changes
and their implementation and effects of the Pareto-optimal
areas. An advantage of using Distance Minimization Problems
lies in the easy visualization of search behaviour due to
geometric properties. Another interesting property compared
to some other dynamic benchmarks is that the dDMP includes
a parameter for changing the complexity of the problem during
optimization. Our experiments show how a possible instance of
the dynamic DMP can be defined and how different algorithms
react to the dynamic changes.

Future work might include a method for obtaining the
Pareto-optimal areas of the problem for arbitrary values of p,
as well as applying this problem to other dynamic optimization
methods to analyze their search behaviour.
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