
Yilin Liu

Exploring the Use of Large-scale
Multi-objective Evolutionary
Algorithms for Training Neural
Network Weights

Intelligent Cooperative Systems
Computational Intelligence

Exploring the Use of Large-scale Multi-objective
Evolutionary Algorithms for Training Neural

Network Weights

Bachelor Thesis

Yilin Liu

March 18, 2021

Supervisor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Advisor: Dr.-Ing. Heiner Zille

Yilin Liu: Exploring the Use of Large-scale Multi-objective Evolu-
tionary Algorithms for Training Neural Network Weights
Otto-von-Guericke Universität
Intelligent Cooperative Systems
Computational Intelligence
Magdeburg, 2021.

Abstract

In recent years, the study of multi-objective optimization problems with large-
scale variables has become one of the hot research directions in the field of
evolutionary computation, and at the same time neural networks have been
applied in more and more fields. Current training methods for neural net-
works are mainly based on the back-propagation algorithm. In this work, we
treat the weight training of neutral networks as a multi-objective optimization
problem and optimize the problem using large-scale multi-objective evolution-
ary algorithms, where the network’s architecture remains unchanged during
the optimization process. We use Non-dominated Sorting Genetic Algorithm
(NSGA-II), as well as large-scale optimization techniques such as Grouped and
Linked Polynomial Mutation and Linear Combination Search Mechanism. In
addition, we propose a combination of Grouped and Linked Polynomial Muta-
tion and Linear Combination Search Mechanism, and apply it to this particular
problem like the other algorithms.

We compare the results obtained by the evolutionary algorithms and the BP
algorithm using the "adam" optimizer and explore the behavior of the evolu-
tionary algorithms in the optimization process as well as the effectiveness of
different large-scale optimization techniques for this particular problem. The
experiments show that the evolutionary algorithms can achieve acceptable re-
sults on feedforward neural networks with a relatively small number of weights,
and that the applied large-scale optimization technique, namely Grouped and
Linked Polynomial Mutation, has the ability to improve the performance of
NSGA-II on this problem. However, there is still a gap between the evolution-
ary algorithm and the BP algorithm when the number of weights is very large,
and in optimizing convolutional neural networks.

I

Preface

I want to express my sincere gratitude to everyone who has supported and
helped me during the writing of this thesis. First of all I would like to thank
Sanaz Mostaghim for giving me the opportunity to complete this thesis in
the chair of computational intelligence. I am very grateful to Heiner Zille
for providing me with the topic and for his patient, thorough and detailed
guidance and help from the beginning to the end of the thesis. Finally I want
to thank my family for their continuous support.

III

Contents

List of Figures VII

List of Tables IX

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 3
1.3 Structure of Thesis . 3

2 Fundamentals 5
2.1 Neural Networks . 5

2.1.1 Feed-Forward Neural Networks 7
2.1.2 Convolutional Neural Networks 7

2.2 Backpropagation(BP) Algorithm 10
2.3 Multi-Objective Optimization 12
2.4 Evolutionary Algorithms . 13

2.4.1 Encoding . 15
2.4.2 Fitness Function . 15
2.4.3 Selection for Reproduction 16
2.4.4 Crossover . 17
2.4.5 Mutation . 17
2.4.6 Environmental Selection 18
2.4.7 Termination Criterion 18

2.5 Performance Metrics . 19

3 Related Work 23
3.1 Neural network hyperparameters 23
3.2 Neural network weights . 26

V

Contents

3.3 Multi-Objective Evolutionary Algorithm 29
3.4 Large-scale evolutionary algorithm techniques 30

4 Implementation 39
4.1 Datasets And Networks . 39
4.2 Algorithms Design . 44

4.2.1 Encoding . 45
4.2.2 Fitness Function . 45
4.2.3 Algorithms . 45
4.2.4 LCSAbasedGroupLinkNSGA-II 46

5 Experiment/Evaluation 49
5.1 Experiment Goals . 49
5.2 Parameter Setting . 50
5.3 Results . 51

5.3.1 Comparison of the EA and the BP Algorithm 57
5.3.2 Comparison of the differences between different EAs . . . 62
5.3.3 Variation of the Performance of EAs 64
5.3.4 Summary . 67

6 Conclusion & Future Work 69

Appendices 71

Bibliography 85

VI

List of Figures

2.1 Structure of a Perceptron . 6
2.2 Structure of a Feed-Forward Neural Network 7
2.3 Convolution and Pooling of CNN 9
2.4 Examples of Pareto Set, Pareto Front and Non-Dominated So-

lutions . 14
2.5 General Process of the Evolutionary Algorithm 14

3.1 Encoding in NEAT . 25
3.2 Crossover in NEAT . 26
3.3 Mutation in NEAT . 26
3.4 The Process of NSGA-II . 31
3.5 Elitism selection . 32
3.6 Linear Search Mechanism . 35

4.1 ’0’ in Load Digits . 40
4.2 ’5’ in Mnist . 41
4.3 Samples in Cifar10 . 41

5.1 Hypervolumes of Load Digits 59
5.2 Legend . 59
5.3 Network-I . 59
5.4 Network-II . 59
5.5 Network-III . 59
5.6 Hypervolumes of Mnist . 60
5.7 Legend . 60
5.8 Network-I . 60

VII

List of Figures

5.9 Network-II . 60
5.10 Network-III . 60
5.11 Network-IV . 60
5.12 Hypervolumes of Cifar10 . 61
5.13 Legend . 61
5.14 Network-I . 61
5.15 Network-II . 61
5.16 Network-III . 61
5.17 Network-IV . 61
5.18 Non-dominated Solutions of NSGA-II 62
5.19 Network-IV and Mnist . 62
5.20 Network-IV and Load Digits . 62
5.21 Hypervolume of LCSAbased-Algorithms over time 65
5.22 Hypervolume of LCSAbased-Algorithms over time 66

A.0.1Network-I + Load Digits . 73
A.0.2Network-II + Load Digits . 74
A.0.3Network-III + Load Digits . 75
A.0.4Network-IV + Load Digits . 76
A.0.5Network-I + Mnist . 77
A.0.6Network-II + Mnist . 78
A.0.7Network-III + Mnist . 79
A.0.8Network-IV + Mnist . 80
A.0.9Network-I + Cifar . 81
A.0.10Network-II + Cifar . 82
A.0.11Network-III + Cifar . 83
A.0.12Network-IV + Cifar . 84

VIII

List of Tables

4.1 Network-I . 42
4.2 Network-II . 43
4.3 Network-III . 43
4.4 Network-IV . 43

5.1 Median and IQR Values of the Precision 53
5.2 Median and IQR Values of the Recall 54
5.3 Median and IQR Values of the Accruracy 55
5.4 Median and IQR Values of the Sparse Cross Entropy 56
5.5 Median and IQR Values of the Hypervolumes of the Evolution-

ary Algorithms . 57

IX

1 Introduction

In recent years, in the field of multi-objective optimization algorithms, solving
multi-objective optimization problem (MOP) containing large-scale decision
variables has become one of the hot research topics. Evolutionary algorithms
(EA), as one of the ideal methods for solving MOPs, combined with different
search strategies and optimization techniques, also provide an effective research
method for large-scale complex MOPs.

Deep learning, another rapidly growing field of machine learning in recent
years, has been successfully applied to image speech recognition, automatic
machine translation and many other fields. The universal approximation the-
orem [10] states that neural networks are capable of approximating arbitrarily
complex functions with arbitrary accuracy. The power of neural networks often
comes with a huge number of parameters, and how to train neural networks
effectively and efficiently has been one of the main focuses of research in the
field of deep learning.

As training a neural network can be viewed as an optimization problem that
contains neural network weights as decision variables, and the proposed large-
scale optimization techniques also have the potential to make it practical to
use EA to solve this problem. In addition, the global search space of EA, the
ability to include multiple optimization objectives simultaneously, and some
drawbacks of the back-propagation (BP) algorithm as the dominant method for
training neural networks nowadays also make the use of EA more attractive.
The thesis examines the feasibility of training neural network weights using
large-scale multi-objective evolutionary algorithms.

1.1 Motivation

At present, the mainstream algorithms for training neural networks are based
on the BP algorithm. After the scalar of the loss function is obtained through

1

1 Introduction

forward propagation through the network, the information provided by the loss
function is used for backward propagation to calculate the gradients. With the
obtained gradients, the weight can be updated by different gradient descent al-
gorithms. The emergence of BP algorithm simplifies the process of calculating
the weights of deep neural networks.

The BP algorithm has contributed to the great success of neural networks, but
the algorithm itself has some shortcomings, such as:

• Slow convergence rate

The BP algorithm converges very slowly. For deep neural networks, the
gradient solution of each layer of the network depends on the gradient of
the subsequent layer. Therefore, for any layer, we cannot determine the
gradient of the current layer when the gradient of the subsequent layer
is unknown [30].

• Local search mehtod

The BP algorithm is an optimization method of local search. In opti-
mization problems, the aim is to find the global optima, but BP as a
greedy algorithm is likely to fall into local optima [30].

• Gradient vanishing and gradient explosion

Backpropagation passes the updated information of the gradient layer
by layer. As the number of layers increases, the updated information
of these gradients may attenuate or increase exponentially, making the
network weights unable to be updated reasonably.

These shortcomings reflect the need to explore new training methods for neural
networks and also the advantages of using the EA to train networks. As a
global search method, EAs are not constrained by local optimality. When
using EAs, weight updates are not based on gradients and thus the problems
caused by gradients do not arise. In addition, the efficiency of EAs can be
greatly improved by combining them with distributed computing.

Moreover, although EAs generally could take longer time to find the optima,
unlike the BP algorithm that converges too slowly as complained above, the
high time cost of EAs is due to their global search space. In addition, be-
cause the nature of the EA is very suitable for parallel processing, distributed
computing can greatly accelerate its running time, some of the specific imple-
mentations of which can be found in [40][20]. Although there have been many

2

1.2 Goals

research results in distributed back-propagation over the years, the two main
forms are currently synchronous and asynchronous distributed training, each
with its own drawbacks [2].

1.2 Goals

The thesis is dedicated to exploring the performance of large-scale multi-
objective evolutionary algorithms in training neural networks. This means
that the EA will be applied to neural networks of different types and archi-
tectures. More specifically, all weights and biases in the neural networks with
fixed architectures are encoded into a form that can be processed by the EA
and then optimized by the EA. During the optimization process, the architec-
ture of the neural network remains unchanged. In addition to the standard
EA, two techniques designed for large-scale optimization problems that have
been proposed in recent years are applied to test whether they provide perfor-
mance improvement for the EA on this optimization problem. Moreover, in
this thesis, a combination of the these two techniques is proposed, and again
the results will be compared with those of other methods. The process of these
methods will be described in the subsequent sections. In order to verify the
performance of different methods, multiple data sets of different complexity
are used and compared with the BP-based training algorithm.

The thesis also aims to identify the unique advantages and disadvantages of
the EA for training neural networks. Furthermore, this work should also make
a certain contribution to exploring the limit of the number of parameters that
a large-scale EA can handle.

1.3 Structure of Thesis

A general overview of the content of the chapters of this thesis is provided
here. In the first chapter we introduced the motivation for using large-scale
multi-objective EAs to optimize the weights of neural networks and the goals
of this thesis. Chapter 2 provides an introduction to the fundamental concepts
involved in this thesis. Next, the related work of this thesis is enumerated and
summarised in Chapter 3. Subsequently, Chapter 4 describes the dataset and
network architecture used in the thesis, as well as the specific implementation

3

1 Introduction

of the used EAs to optimize the network weights. The experimental results
and their corresponding analysis are described in Chapter 5. Finally, Chapter
6 provides the conclusions of the thesis in light of our goals and discusses future
work.

4

2 Fundamentals

The basic concepts covered in the thesis are introduced in this chapter. First
are the components of a neural network and the way in which feedforward neu-
ral and convolutional neural networks process data and output results. Then
comes the process of optimizing the network weights by the BP algorithm.
This is followed by the definition of multi-objective optimization. Finally, the
optimization process of EA is described and the various operators involved in
the process.

2.1 Neural Networks

Artificial neural networks (ANNs) were inspired by the biological structure
of the human brain and the way it processes information. Similar to human
neural networks, artificial neural networks are composed of neurons which
cooperate with each other to learn and process information. As early as the
1950s, artificial neuron models, called "perceptrons" were proposed in [35].

Figure 2.1 shows the structure of a simple perceptron, where Xi(i = 1, ..., n) is
the input information, wi(i = 1, ..., n) represents the weight of each connection,
b is called the bias which is often just a constant, and f denotes a certain
activation function. The input information is summed over the weights by the
following formula:

z =
n∑
i=1

wiXi + b (2.1)

After that we transform z using a specific activation function to obtain the
activation of the perceptron act, i.e:

act = f(z) (2.2)

5

2 Fundamentals

X1

X2

Xn

.

.

.

Σ f

1

z act

w1

w2

wn

b

Figure 2.1: Structure of a Perceptron

The purpose of using activation functions is to add nonlinear factors to percep-
trons or neural networks to give them the ability to solve nonlinear problems.
Some popular activation functions are shown as follows:

• Step Function:

f(z) =

{
0, for z ≥ 0

1, for z < 0
(2.3)

• Sigmoid or Logistic Activation Function:

f(z) =
1

1 + e−z
(2.4)

• ReLU:

f(z) = max(0, z) (2.5)

• Softmax:

f(zi) =
ezi∑
j e

zj
(2.6)

The softmax function is a more generalized logical activation function
for multi-class classification problems. It can also be considered as a
normalization that outputs a normalized probability distribution for all
classes.

6

2.1 Neural Networks

.

.

.

.

.

..
.
.

.

.

.

.

.

.

. . .

Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Output 1

Output 2

Figure 2.2: Structure of a Feed-Forward Neural Network

2.1.1 Feed-Forward Neural Networks

To solve complex problems in the real world, we need a much more complex
network than a simple perceptron.

As shown in Figure 2.2, a typical feedforward network consists of input layer,
hidden layer and output layer. The neurons in the input layer are used to
receive information about the problem to be solved, and the neurons in the
hidden layer are responsible for processing the input information. The output
layer serves as the final layer of the neural network to output results. Before
the output layer, the output of each layer is directly used as the input of
the next layer. The layers are connected to each other by weights, and each
neuron works like the perceptron described previously. These weights would
be changed continuously by some specific learning methods during training so
that the neural network gradually has the ability to solve problems.

2.1.2 Convolutional Neural Networks

Another widely used neural network type is the convolutional neural network
(CNN), which is very good at processing data with a grid structure, such as
images, videos, etc. A CNN is a neural network that uses convolution instead
of matrix multiplication in at least one of its layers. A typical convolutional

7

2 Fundamentals

neural network consists of convolution layer, pooling layer and fully connected
layer.

The convolutional layer consists of a set of filters based on convolutional op-
erations, which are also called "convolutional kernels". Mathematically, the
convolution of two functions f, g can be expressed as:

(f ∗ g)(n) =

{∫∞
−∞ f(τ)g(n− τ)dτ , if cotinuous∑∞
τ=−∞ f(τ)g(n− τ), if discrete

(2.7)

In general, filters or convolutional kernels use convolution to extract informa-
tion from the input. The output of each filter combined with the input is the
filtered image, which is also called ’convolved feature’ or ’convolved feature
map’.

Since CNNs are good at processing data with grid structure such as images, a
two-dimensional image I is used as an example. The corresponding filter K is
a two-dimensional matrix, and their convolution can be expressed as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.8)

, where i, j, m, n are pixels of I and K respectively [21].

Convolutional layers use a set of filters and convolution of the input image
to generate a new filtered image. Each filter can be thought of as a specific
feature extractor that is used to extract specific features from the input image.
The larger the convolution value of a particular filter in a region of the input
image, the closer that region is to the feature represented by that filter. The
use of convolution allows us to use filters that are much smaller than the
input image to detect and efficiently extract useful information. Also, within a
convolutional layer, different regions of an image share the same set of filters,
which means that the number of parameters of the neural network can be
greatly reduced.

However, another problem that needs to be considered is that neighboring
pixels in an image usually have similar values, so the values of the neighboring
pixels in the output image of the convolutional layer are also extremely similar,
which means that the output of the convolutional layer could often contain
a lot of redundant information. Therefore, CNNs usually introduce pooling
layers to adjust the output of the convolutional layer. Intuitively, pooling

8

2.1 Neural Networks

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 1 0 0

0 0 1 0 1

1 0 1
0 1 0
0 0 1

4 3

2 3
Image Convolved

Feature

Filter

4

Convolution
Stride: 2

Padding: 0

Max Pooling: 2x2

3

Average Pooling: 2x2

Figure 2.3: Convolution and Pooling of CNN

is just down-sampling, which reduces the number of values contained in the
output of a convolutional layer by decreasing its dimensionality with a fixed
rule. Continuing with the example of a two-dimensional image, the pooling
layer is equivalent to a window that slides over the image with a certain stride,
getting one value at a time within the window according to fixed rules. For
example, Max-Pooling extracts the maximum value within the window and
Average-Pooling extracts the average of all pixels in the window. The size of
the window and the stride are flexible. A large window and stride means that
more information of the image may be lost during pooling, but the output of
the pooling layer also has a smaller dimension. The way the convolutional and
pooling layers process the data can be referred to Figure 2.3.

The pooling operation also has a special property, namely "Translation Invari-
ance", which means that for the pooling layer, the resulting output is constant
when the pixels in the input image change slightly, which allows the robustness
of the network to be enhanced.

The last part of the CNN is fully-connected layer. After dimensionality reduc-
tion of the data by convolutional and pooling layers, the final output image, i.e.,
two-dimensional data, is flattened to serve as input to fully connected layer,
and the result of the whole network is outputted through the fully connected
layer.

9

2 Fundamentals

2.2 Backpropagation(BP) Algorithm

The BP algorithm was proposed in 1986 and the core idea is to compute
the gradient efficiently by making the information from the loss function flow
backwards along the network. The BP algorithm consists of two processes,
forward propagation and backward propagation, which are iterative until the
termination condition is satisfied. The following is an example of a three-layer
neural network with n-dimensional input ~X(x1, x2, ..., xn), m-dimensional ac-
tual output ~Y (y1, y2, ..., ym) and the corresponding expectation ~O(o1, o2, ..., om)

to introduce the derivation process of the algorithm. The two weights matrices
of the network are ~W1, ~W2. That is, ~W1, ~W2 represent the weights to connect
the input and the hidden layer, the hidden layer and the output layer of the
network respectively. The two biases are b1, b2. For simplicity, we denote the
output of the hidden layer by h, and the activation function f is an identity
function.

• Forward Propagation

The input information is passed through the input layer with the hidden
layer and the result is outputted by the output layer. The output results
and expectations are evaluated by an loss function, i.e.:

h = f (z1) = f
(
~W1

~X + b1

)
= ~W1

~X + b1 (2.9)

Y = hz2 = h ~W2 + b2 (2.10)

Assume that the loss function is mean squared error:

E =
1

2

(
~Y − ~O

)2
(2.11)

• Back Propagation

Now we take the information provided by the loss function and back
propagate it along the network to update the gradient. The degree
of weight update is determined by the learning rate η of the BP algorithm

– Update a certain weight w2i in ~W2, according to the chain rule:

dE

dw2i

=
dE

d~Y

d~Y

dw2i

(2.12)

10

2.2 Backpropagation(BP) Algorithm

dE

dw2i

=
(
~Y − ~O

)
h (2.13)

4w2i = −η
(
~Y − ~O

)
h (2.14)

– Update a certain weight w1j in ~W1:

dE

dw1j

=
dE

d~Y

d~Y

dh

dh

dw1j

(2.15)

dE

dw1j

=
(
~Y − ~O

)
~W2X (2.16)

4w1j = −η
(
~Y − ~O

)
~W2X (2.17)

There are different training approachs based on the BP algorithm,
for instance, Batch Gradient Descent(BGD), Stochastic Gradient De-
scent(SGD) and Minibatch Gradient Descent(MGD). The difference be-
tween them is the number of samples used for each gradient calculation.
When using BGD we use the entire dataset to calculate the gradients and
update the weights based on the average of the gradients of all samples.
However, this approach is too costly when the dataset has many samples.
SGD considers only one sample at a time and updates the network with
the gradient of this one sample. Frequent updating of weights makes the
convergence faster, but SGD oscillates back and forth at the minimum
due to the constant change of losses. Another approach is MGD, where
MGD divides the entire dataset into several fixed-size batches and up-
dates the weights each time using the average gradient of all samples in
a batch. This improves the training efficiency while maintaining some
convergence stability [21].

The BP algorithm has low computational cost and good generality.
Therefore, the training method based on BP algorithm has become the
preferred method for training neural networks nowadays. However, the
shortcomings of the BP algorithm itself are obvious.

11

2 Fundamentals

– Local Minima

When there are multiple local minima, the gradient of the BP-based
gradient descent algorithm is zero when it falls into a certain local
minima, so the network performance cannot continue to improve by
increasing the number of iterations.

– Gradient Explosion and Gradient Vanishing

It is the problem of gradients being multiplied repeatedly in deep
neural networks, showing exponential increase or decrease and re-
sulting in weights that cannot be reasonably updated. This is a
problem in the design of BP algorithm itself and one of the main
troubles in training large neural networks.

According to the above example of the derivation of the BP al-
gorithm, for a certain weight w1j in the first layer of a multilayer
neural network without bias, the update amount is:

4w1j = −η dE

dhn

dhn
dzn

dzn
dhn−1

...
dz2
dh1

dh1
dz1

dz1
dw1j

(2.18)

4w1j = −η dE

dhn
f ′(zn) ~Wnf

′(zn−1) ~Wn−1...f ′(z2) ~W2f
′(z1)

(2.19)

It can be seen that when f ′(zi) ~Wi, i = (1, 2, 3, .., n) is greater than
1, the magnitude of weight updates becomes exponentially larger as
the number of network layers increases. Conversely, when it is less
than 1, the amount of weight updates decreases exponentially. That
is, the so-called "gradient explosion" and "gradient vanishing".

2.3 Multi-Objective Optimization

The optimization problem can be understood as the process of selecting the
optimal solution among multiple potential solutions for a problem based on a
particular objective, according to [27], the definition of an optimization prob-
lem is:

12

2.4 Evolutionary Algorithms

Definition 1 A Tuple (Ω, f,≺) describes an optimization problem: with a
search space Ω, a fitness function f : Ω −→ R assigns a quality value to each
solution, and a relation operator ≺∈ {<,>}.

A MOP is an optimization problem that contains more than one objective.
Mathematically, a MOP can be represented as:

min ~f(~x) = (f1(~x), f2(~x), ..., fm(~x))

~x ∈ Ω ⊆ Rn

where fi represents objectives. In the real world, most optimization problems
are multi-objective, and in general, the objectives of a MOP are conflicting.
This means that the improvement of one objective may lead to the deteriora-
tion of another or more objectives. Therefore, it is often impossible to find a
solution that are optimal in every objective simultaneously.

Therefore, algorithms for solving MOPs usually focus on finding approxima-
tions to the true pareto optimal set among all possible solutions. There are
several concepts that need to be introduced. First, a feasible solution A in a
population whose corresponding value in the objective space is not dominated
by all other solutions that have been found, i.e., if there are no solutions for
which all objective values are better than those of A. Then A can be called
a non-dominated solution. Pareto optimal is then the set of non-dominated
solutions in the whole search space, and it is also known as pareto front. The
feasible solution corresponding to the pareto front in the space of decision vari-
ables is called pareto set. The relationship between the concepts above can be
also seen in Figure 2.4.

2.4 Evolutionary Algorithms

EA, as one of the mainstream methods for solving optimization problems, is a
stochastic global optimization method designed by simulating the evolutionary
mechanism of organisms in nature. It incorporates the mechanisms of natural
selection and genetics into the optimization process of the problem and derives
the solution to the optimization problem through reproduction as well as se-
lection. The process of EA is illustrated in Figure 2.5, and several concepts of
EA are introduced in the following.

It is also important to note that in EA "population" refers to a set of individ-
uals, and there can be duplicate individuals in a population. Each population

13

2 Fundamentals

x1

x2 f2

f1
Pareto Front Pareto Optimal

Non-Dominated Solutions

Pareto Set

Figure 2.4: Examples of Pareto Set, Pareto Front and Non-Dominated Solu-
tions

 Yes

 No

Initialization

Fitness

Evaluation

Termination

Criteria Selection for

Reproductio

n

Crossover

Mutation
Environmental

Selection

Optimal

Figure 2.5: General Process of the Evolutionary Algorithm

14

2.4 Evolutionary Algorithms

corresponds a generation in the EA, and generally the size of the population
does not change. A population can be also seen as a basic unit of EA, where
crossover, mutation and selection operators take place.

2.4.1 Encoding

In order to use the EA to solve a real problem, it is necessary to first encode
the objects in the real problem into expressions that the EA can handle. The
possible solutions in the original problem are called phenotypes, and after en-
coding these possible solutions are called genotypes or chromosomes, which are
also treated as individuals in the EA. Thus, encoding can also be understood
as a mapping from the space of phenotypes to the space of genotypes. After
encoding, the EA happens in the genotype space. As in nature, genotypes or
chromosomes consist of multiple genes, and each genotype can be decoded into
a possible solution [17].

Binary encoding is a common way of encoding. In binary encoding, chromo-
somes are strings of 1s and 0s. Another common encoding method is real
value encoding, where the genes of the chromosomes are real value. Different
problems often have different suitable encoding schemes. For example, for an
optimization problem consisting of a series of binary decision problems, fea-
sible solutions can be very easily representated by binary encoding. For the
travelling salesman problem [28], the permutation of cities can be used as a
way to encode. For the neural network weight training in this thesis, real value
encoding is applied, and will be described in Chapter 4.

Although there is no fixed rule for the encoding of EA, we often consider that
a reasonable encoding should have the following properties [27], [17]:

• All feasible solutions can be represented.

• Similar phenotypes are encoded to have similar genotypes.

• Similar genotypes have similar fitness values.

• The set of genotypes is closed under evolutionary operators.

2.4.2 Fitness Function

The differences between individuals in nature lead to different survival rates of
different individuals, and natural selection allows some genes to be preserved

15

2 Fundamentals

while others are eliminated. The fitness function in EA is the indicator and
basis for this process. The fitness of each individual is measured by the fitness
function, and the probability of individuals surviving to the next generation
is determined by their fitness. Often the objectives and fitness functions of an
optimization problem refer to the same thing, or the fitness function is just a
simple transformation of the objectives.

For MOPs, the fitness of each individual of the EA is measured in terms of
all fitness functions. Different versions of EA have different designs of how
to calculate the overall fitness value. For example, the fitness function of the
Multi Objective Genetic Algorithm (MOGA) [34] is

fitness(X) = 1 + nq(X)

, where nq(X) denotes the number of individuals dominated by individual X.

2.4.3 Selection for Reproduction

According to genetics, the genes of each individual are passed on to the off-
spring, and the role of section for reproduction is to select individuals with
good fitness to be the parents of the next generation. Together with other
evolutionary operators, it ensures the continuous improvement of the quality
of individuals.

Selection is usually based on fitness, i.e., individuals with better fitness also
have a higher probability of being selected. To ensure that the algorithm does
not fall into a local optimum, this process is not deterministic. An individual
with poor fitness also has a chance to be selected, because it may be able to
produce a better solution through other operators. Commonly used selection
algorithms are roulette wheel selection and tournament selection, etc [27].

Roulette wheel selection is one of the most commonly used selection method,
in which the selection probability of each individual is proportional to its fit-
ness value, and the greater the fitness, the greater the selection probability.
Tournament selection takes n individuals from the entire population and these
individuals compete with each other on the basis of their fitness and the winner
will be selected.

16

2.4 Evolutionary Algorithms

2.4.4 Crossover

In order to explore new feasible solutions, EA need to generate new chro-
mosomes from old ones. Such operators are called variation operators, and
crossover is one of it. Crossover operator generally generates new chromo-
somes based on the genes of two chromosomes. The new chromosome contains
both genes from father and genes from mother. The logic behind crossover is
that we want the two superior chromosomes to produce offspring that inherit
the superior genes from both of them and thus have better fitness [17].

Crossover is a random operator. It is indeterminate which genes from which
parent are derived by the offspring. There are many different methods of
crossover, such as point crossover, uniform crossover, etc [27]. It is important
to note that the old chromosomes used to generate offspring are not necessarily
two. It is possible to generate new chromosomes using one or more than two
chromosomes.

Simulated Binary Crossover (SBX), which is mainly used in EAs with real value
encoding. Two selected individualsX1(x11, x

1
2, ..., x

1
n) andX2(x21, x

2
2, ..., x

2
n) gen-

erate their offspring C1(c11, c
1
2, ..., c

1
n) and C2(c21, c

2
2, ..., c

2
n) by the equation 2.20:{

c1i = 0.5× [(1 + β) · x1i + (1− β) · x2i]
c2i = 0.5× [(1− β) · x1i + (1 + β) · x2i]

(2.20)

,where β is determined by a random number µ between 0 and 1 according to
the equation 2.21:

β =

{
(2µ)

1
η+1 , if µ ≤ 0.5

(2 (1− µ))
1
η+1 , otherweise

(2.21)

η could be any nonnegative real number, the larger the value of η the higher
the probability of generating offsprings close to their parents [11].

2.4.5 Mutation

Another variation operator is mutation, which is the generation of new chro-
mosomes by changing a small number of genes in one chromosome. The goal
is to generate new genes to enrich the current gene pool. Like crossover op-
erations, mutation is a random operation. Which gene of a chromosome is
mutated to what value is usually done by a series of random operations. It is

17

2 Fundamentals

also worth noting that the way mutations are made often depends on the way
they are encoded. For example, for binary encoding, the inversion of a bit in a
bit string can be considered a mutation. For some specific problems, mutations
may change the length of the chromosome. For example, when optimizing the
structure of a neural network, adding neurons or hidden layers.

Polynomial Mutation [12] is one of the most commonly used mutation methods
for real value encoding. The specific procedure of which is shown below:

xk = xk + σ(uk − lk) (2.22)

σ =

{
[2u+ (1− 2u)(1− σ1)ηm+1]

1
ηm+1 , if u ≤ 0.5

1− [2(1− u) + 2(u− 0.5)(1− η2)ηm+1]ηm+1, if u > 0.5
(2.23)

σ1 =
xk − lk
uk − lk

(2.24)

σ2 =
uk − xk
uk − lk

(2.25)

, where xk is the variable to be mutated, u is a random value between 0 and 1,
ηm is the distribution index, and uk and lk are the upper and lower boundaries
of xk.

2.4.6 Environmental Selection

The role of environmental selection is to select individuals to be retained into
the next generation. Since the population size is usually fixed, it is important to
select suitable individuals among the individuals of the new current population
and their offspring to be retained in the next generation. Similar to selection
for reproduction, environmental selection is carried out using methods such as
roulette wheel selection, i.e., it tends to select individuals with higher fitness.

2.4.7 Termination Criterion

The termination criterion defines when the EA stops, and it can be divided
into two types. One is when the optimal solution to the problem is known,
in which case the discovery of the optimal solution can be the termination
criterion of EA. However, although EA are global search algorithms, there is
no guarantee that the optimal solution will be found. In addition, for most
optimization problems, the optimal solution is not known before, or we do

18

2.5 Performance Metrics

not care about the true global optimum or pareto front. Sometimes what we
really want is to find an acceptable solution within an acceptable time limit.
Therefore EA usually use other criteria as their stopping conditions, such as:

• The fitness of an individual exceeds a predetermined threshold.

• The algorithm is executed for a fixed amount of time.

• The fitness function is executed a fixed number of times.

• The improvement in fitness over consecutive generations is below a pre-
determined threshold.

2.5 Performance Metrics

In this thesis, the problems handled by neural networks are all multi-
classification problems. The specific datasets will be presented in Chapter
4. Several evaluation criteria for the multiclassification tasks involved in the
experiments will be presented here.

• Hypervolume

Hypervolume was first proposed by E. Zitzler and L. Thiele [48] as a
metric to evaluate the quality of the solution set of a multi-objective
optimization algorithm. It represents the volume of the hypercube en-
closed by the individuals in the solution set and the reference points in
the objective space. Thus different reference points can produce different
hypervolume values. It is noted in [48] that when the solution set A is
superior to another solution set B, the hypervolume of A will also be
larger than the hypervolume of B.

• Categorical Cross Entropy

Categorical cross entropy is one of the common metrics used by neural
networks when dealing with multi-classification problems. After apply-
ing the Softmax activation function, the output of the neural network
predicts the probability that the input data belongs to each class. For
a multi-classification problem, the probability of the input belonging to
two classes is assumed to be p and 1 − p, respectively. Then the cross
entropy can be calculated as:

19

2 Fundamentals

Li = −
∑
j

~Oi,jlog(~Yi,j) (2.26)

, where O refer to the expected outputs, Y are the network predictions,
i denotes the sample and j denotes the class.

Categorical cross entropy is used to evaluate the difference between the
probability distribution of the current output and the actual probability
distribution, the smaller the value of categorical cross entropy, the smaller
the difference between the output and the expectation.

Before introducing the following metrics, the meaning of several abbrevia-
tions needs to be explained. "True Positive (TP)" indicates the number of
positive samples classified as positive correctly in the experiment. "True Neg-
ative (TN)" stands for the number of negative samples correctly classified as
negative. "False Positive (FP)" means the number of negative samples were
incorrectly classified as positive. "False Negative (FN)" means the number of
true samples that are incorrectly classified as negative.

• Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN
(2.27)

• Precision

Precision =
TP

TP + FP
(2.28)

• Recall

Recall =
TP

TP + FN
(2.29)

All the above described are the calculation methods of each index when dealing
with the binary classification problem. However, when it comes to multi-
classification problems, there are different ways to calculate each metric. Take

20

2.5 Performance Metrics

the method provided in Sklearn as an example, "micro" calculates metrics
globally by counting the total true positives, false negatives and false positives.
"macro" calculates metrics for each label and then calculate their unweighted
mean. Similarly, "wighted" calculates metrics for each label and then calculate
their mean using the number of true samples for each label as weights [4].

Different metrics assess the goodness of the results from different aspects. Ac-
curacy is used to measure the percentage of samples that are correctly pre-
dicted, precision measures how many of the predicted positive samples are
actually positive, and recall measures how many of the true positive samples
were successfully predicted. Most of the time, a single metric does not give a
complete picture of the model’s performance. For example, a model that can
only accurately classify positive samples can achieve a high accuracy rate on a
dataset containing mostly positive samples. However, applying this model to
a problem where determining a positive sample as negative can have serious
consequences can be problematic. Precision is a good metric when the cost of
FP is high. And Recall is more applicable when the cost of FN is high, as can
be seen from 2.29.

21

3 Related Work

In recent years, breakthroughs in large-scale EA have made it possible to
train neural networks using EA. EA, as one of the most widely used EA,
have also been used in several ways to improve the performance of neural
networks. This section provides a survey of the combination of EA with
neural networks and several techniques designed for EA to solve large-scale
optimization problems.

3.1 Neural network hyperparameters

The hyperparameters of neural networks have a huge impact on neural net-
works. The learning rate determines the convergence speed and accuracy, and
the choice of hyperparameters is usually highly dependent on intuition and
experience. Although some methods of scheduling learning rates have been
proposed, for example, time-dependent scheduling [38] and adaptive schedul-
ing [33][39]. However, these methods themselves also contain hyperparameters,
which makes them not optimal for different network architectures and different
data sets. Thus, the idea of using EA to optimize neural network hyperpa-
rameters was born.

In [25], the EA is used to optimize the learning rates of a neural network with
good results, where each layer of the neural network has a different learning
rate at each training step, and these learning rates are used as chromosomes
in the population of the EA for evolutionary adaptation. [24] proposes an
approach that combines the BP algorithm with a EA, called "learning-rate-
optimizing genetic back-propagation (LOG-BP)". Each population of the EA
consists of multiple neural networks, where the learning rate and weights of
each neural network are encoded as an individual. At each step, all neural
networks in the current population are run in parallel, and these are then eval-
uated and selected based on fitness function and selection operator, with the

23

3 Related Work

best individuals being retained into the next generation. For each individual,
the learning rate is changed by the mutation operator, while the training of
the weights remains the responsibility of the BP algorithm. Furthermore, ben-
efiting from the global search capability of EA, the BP algorithm can get rid
of local optimality.

The architecture of a neural network can also be considered as one of its
hyperparameters, which includes the number of hidden layers, the number of
units each hidden layer contains, the type of neural network activation function
and, in the case of a CNN, the size of the kernel size. A proper architecture
gives the network the ability to capture the information required in the input,
to process the information appropriately to achieve a high accuracy, and to
ensure the training efficiency of the network.

In [29], Frank H. F. Leung, H. K. Lam, S. H. Ling, and Peter K. S. Tam
proposed an improved EA to downsize the architecture of the neural network.
They encode the intra-layer connections of feedforward neural networks into
chromosomes, where each connection is a binary variable with 1 representing
a maintained connection and 0 representing a deleted connection. According
to the results they show, a fully connected network can be successfully turned
into a partially connected network by learning. [7] points out the complex
relationship between different hyperparameters and network structure, and
the optimal hyperparameters of different architectures are not the same. [16]
proposed "Evolutionary Deep Networks (EDEN)". In this paper, EA are used
to optimize the convolutional neural network architecture and its associated
hyperparameters. Each EDEN chromosome is composed of two genes: learning
rate and network architecture. They preset different types of neural network
layers, and architecture genes represent the order in which these layers are
composed. EDEN performs well by using different datasets for validation.

NeuroEvolution of Augmenting Topologies (NEAT) [43] is a well-known ap-
proach to optimize the architecture of neural networks using evolutionary algo-
rithms, and here we will mainly introduce its encoding and the corresponding
evolutionary operators. NEAT encodes the neuron nodes and connections of
a neural network in the manner shown in Figure 3.1. For a three-layer neural
network, each layer contains 1, 2, and 1 neuron nodes, respectively. The geno-
typ of this network is [(0 : True, 1 : True, 2 : True, 3 : True)], where 1, 2, 3, 4

represnet the number of connctions shown in the connection set of the Figure

24

3.1 Neural network hyperparameters

1

2

3

4

1
1->2

2
1->3

3
2->4

4
3->4Connection Set

1
1->2

2
1->3

3
2->4

4
3->4

Node Set

Figure 3.1: Encoding in NEAT

3.1. And Ture means that this connection exists in the current network, e.g.
this connection is active.

With respect to the crossover operator, NEAT selects two individuals in the
population, and the crossover can be divided into four cases. As shown in
Figure 3.2, where the connections in red are deactivated (False):

• If the two individuals have the same connection, one of the connection
is selected randomly (Node 1, 2 ,3).

• If one of them possesses a connection that the other does not, this con-
nection is kept to the offspring (Node 4, 5, 6, 7).

• If one has extra connections, such as the Node 9, 10, then whether to
keep these connections to the offspring depends on the relative fitness of
that individual, as in the figure, the last two connections of Parent 2 are
extra connections and are kept to the offspring because Parent 2 has a
higher fitness than Parent 1.

• If the state of a connection in at least one of the two parent individuals
is False, then the state of that connection in the offspring is set to False
(Node 2, 3).

As illustrated in Figure 3.1, there are two cases of mutation, i.e., connection
mutation and node mutation. To perform an the connection mutation, two
nodes are selected among all nodes of an individual and a connection is gen-
erated between these two nodes. For node mutation, an active connection (a
connection with the value of True) of the individual is selected and a node

25

3 Related Work

1
1->4

2
2->4

3
3->4

4
2->5

5
5->4

6
5->6

1
1->4

2
2->4

3
3 ->4

10
1->6

7
6->4

8
1->5

9
3->5

4
2->5

5
5->4

6
5->6

1
1->4

2
2->4

3
3 ->4

10
1->6

8
1->5

9
3->5

7
6->4

Parent 1

Parent 2

Offspring

Figure 3.2: Crossover in NEAT

is added to this connection. As in the figure, the connection 3 (3 -> 4) is
selectied and a node 6 is added between the nodes 3 and 4.

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

7
3->5

Connection Mutation

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

8
3->6

Node Mutation

9
6->4

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

7
3->5

Connection Mutation

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

4
2->5

5
5->4

6
1->5

1
1->4

2
2->4

3
3 ->4

8
3->6

Node Mutation

9
6->4

Figure 3.3: Mutation in NEAT

Based on NEAT, HyperNEAT uses a hypercube-based indirect encoding ap-
proach for the evolution of large neural networks, more details can be found
in [42].

3.2 Neural network weights

There have been several cases of using EA to train network weights:
[22] trained neural networks with a small number of parameters using sim-
ple EA and showed that networks trained using EA outperformed the BP
algorithm. [18] attempts to train neural networks with a large number of pa-
rameters through EA through improved coding schemes. They regard each

26

3.2 Neural network weights

chromosome as a two-dimensional array composed of n genes, and each gene is
an array representing a layer of the network and contains all the information
of that layer. This means that for the convolutional layer, a gene contains
all the values of the convolutional filter, and for the fully connected layer, it
represents all the ingoing weights of the layer. This approach was applied in a
CNN with 4540 parameters for Mnist and a CNN with 291,870 parameters for
Cifar10, but both have an unsatisfactory accuracy of around 40%. These two
datasets are also used in this thesis, and are described in Chapter 4 in detail.

An additional benefit of using EA to train a neural network is that the training
of the network can be treated as a MOP. A neural network performing a
particular task can be thought of as a sparse multi-objective optimization
problem, meaning that most of the decision variables in the resulting solution
to the problem are zero. For example, in the image classification problem, the
neural network only needs to be able to recognise a few specific features of the
input image in order to successfully perform the classification task.

In [44], they propose a population initialization method and a offspring gener-
ation method with masks in such a way that a significant number of decision
variables in each individual always have a value of 0. These two proposed
approches are combined with NSGA-II to optimize the network weights. The
objectives of optimization is the error rate and complexity of the neural net-
work. Taking the initialization method as an example, each individual in the
initialized population is determined by a real-valued variable and its corre-
sponding mask, e.g. an individual can be calculated by a real value vector d
and its mask like:

d ·mask = (1, 2, 3, 4, 5) · (1, 0, 0, 0, 1) = (1, 0, 0, 0, 5)

Assume that the number of decision variables is D and the population size
is N . The first step of initialization is to generate a D × D random matrix
Dec and an D × D identity matrix as mask. A population Q is obtained
by multiplying Dec and the mask row by row. The different levels of non-
dominated solution set in Q are derived by non-dominated sorting. This is to
determine the importance of each variable in this optimization problem, Q is
not the final initialized population.

At the second step, first a random matrix A of size N ×D is generated, and
a N × D matrix mask consisting of zeros. Starting from the first individual,

27

3 Related Work

n random picks are made, each time picking two decision variables in dif-
ferent positions, n is not necessarily the same for different individuals. The
importance of these two variables is compared according to the number of the
non-dominated solution set obtained from the first step. The final initialized
population is calculated by multiplying each row of A and its corresponding
mask. Namely, the values in the positions selected during n random picks for
each individual are the random values in the corresponding indices of matrix
A, and the values of other position are 0.

This method was successfully applied on neural networks consisting of 321
variables to 1241 variables dealing with a binary classification problem. The
method performs weaker than the gradient descent-based training method in
terms of error rate in the output, but EA can significantly reduce the com-
plexity of the network with a guaranteed accuracy to a certain extent.

The encoding method of the EA also plays a very important role. In [23],
the connections between each neuron of the neural network and the weights
of each connection are encoded into two different adjacency matrices, that are
optimized simultaneously during the optimization process, in order to opti-
mize the network architecture as well as the weights at the same time. The
method was successfully applied to a three-layer neural network containing up
to 10 neurons in the hidden layer, which means that a appropriate compro-
mise solution can be chosen in the non-dominated solution set derived by the
algorithm.

EA can also work with the BP algorithm to train the network weights. [8] use
the results of EA as the initial values of the network weights, and then continue
to use the BP algorithm to further train the network. In this combination, EA
serves as a means of pre-training, providing better initial values so that BP
can obtain better results. In addition, the global search space of EA also helps
to free BP from local optima. According to the experiments, the BP algorithm
that applies the initial values provided by EA achieves higher results. Similarly,
[32] first uses the BP algorithm to train the neural network to shorten the
convergence time, before using EA to find the global optima. The examined
network contains 9 weights and according to the results, EA can significantly
further optimize the results obtained by BP.

28

3.3 Multi-Objective Evolutionary Algorithm

3.3 Multi-Objective Evolutionary Algorithm

Multi-objective EAs refer to the EAs proposed for solving MOPs. For instance,
[34] [19] and [13]. Non-dominated Sorting Genetic Algorithm (NSGA-II) [14] is
a well-known multi-objective evolutionary algorithm based on pareto optimal
and also one of the algorithms used in Chapter 5. Before introducing the
specific process, two special operators involved in NSGA-II are introduced,
namely, fast non-dominated sorting and crowding distance assignment.

• Fast Non-dominated Sorting

NSGA-II performs a non-dominated sorting to determine each level of
non-dominated fronts based on the fitness of each individual as evalu-
ated by the multi-objective fitness function, i.e. non-dominated fronts,
as shown in the Pseudo-code 1. In 1, Np is the domination counter,
which is incremented each time a solution is encountered that can domi-
nate the current solution. The first level of non-dominated solutions are
those with Np = 0, the solutions in the current population that are not
dominated by any other individual. In the next step we ignore the set
of first-level non-dominated solutions and then find all remaining solu-
tions in the same way until all individuals in the current population are
classified as non-dominated fronts.

• Crowding Distance Assignment

In NSGA-II, the crowding distance of each individual in each non-
dominated front is also calculated and used as the basis for survival
selection and selection for reproduction. the crowding distance of the
individuals within a non-dominated front can be computed according to
the process illustrated by Pseudo-code 2. In 2, obj(Fi[j]) represents the
value of the objective obj for individual j in non-dominated front Fi.
Max(objFun()) and Min(objFun()) indicate the maximum and mini-
mum values of obj respectively.

For the bi-objective optimization function, the crowding distance of an
individual can be interpreted as the maximum rectangle that the individ-
ual can generate without touching other individuals within the objective
space. The greater the crowding distance of an individual, the more
different it is from the rest of the population. The selection of individu-
als with greater crowding distance in subsequent selection operators will
help to ensure the divisity of the gene pool.

29

3 Related Work

The process of NSGA-II is shown in Figure 3.4, based on the above mentioned
operators.

With respect to the selection for reproduction operator, NSGA-II uses binary
tournament selection, which means that only two individuals are taken from
the population at a time. In this case, tournament selection is based on the
rank of the non-dominated fronts and the crowding distance of an individual. If
the non-dominated front number of individualA is lower than that of individual
B, i.e. FA < FB, then A is selected. If A and B are in the same rank of non-
dominated front, then their crowding distance is compared, and the one with
the greater crowding distance wins. Based on the selected parents, SBX and
polynomial mutations are used to produce offspring.

In NSGA-II elitism selection is also used as the environmental selection oprator,
which is illustrated in the following:

As shown in the Figure 3.5, assume the population size is N , and the currently
we are at the t−th generation. The process of elitism selection can be expressed
as the following procedure:

Step 1 Combine the generated new offspring Qt with its parent population Pt
into R of size 2N

Step 2 Perform Non-Dominated sorting on R to obtain the non-dominated
solution sets Fi(i = 1, 2, ..., n)

Step 3 Calculate the crowding distance of each non-dominated solution set
Zi(i = 1, 2, ..., n)

Step 4 Add the non-dominated solution set F to the next parent population
Pt+1 in order according to the non-domination rank

Step 5 If the size of Pt+1 will exceed N when adding Fm(1 ≤ m ≤ n), then
add the individuals in Fm(1 ≤ m ≤ n) to Pt+1 in order of largest to
smallest crowding distance, so that the size of Pt+1 reaches N

3.4 Large-scale evolutionary algorithm
techniques

EA suffers from the curse of dimensionality, so it has been a long-standing re-
search hotspot in the field of evolutionary computation to use EA to efficiently

30

3.4 Large-scale evolutionary algorithm techniques

 Initialize
parent population

Perform non-dominated sorting and
calculate

crowding distance

Binary Tournament
Selection

SImulated Binary
Crossover

Merge parent population
and offspring

Termination Criteria

Perform Non-dominated sort and calculate
crowding distance

Select new parent population for
next generation

Output

Yes

No

Polynomial Mutation

Figure 3.4: The Process of NSGA-II

31

3 Related Work

Pt

Qt

Z1

Z2
Z3
Z4

Z5

Z6
eliminated

R

Pt+1

Figure 3.5: Elitism selection

solve large-scale optimization problems containing huge numbers of decision
variables. The early research has centered on large-scale single-objective opti-
mization problems, and many algorithms as well as techniques have been pro-
posed. Most of them are based on the idea of Cooperative Coevolution(CC),
which is to divide a large-scale problem into a set of smaller problems by
dividing the variables in an individual into multiple groups. The divided sub-
problems are called "species", and each species is supposed to be a part of
the solution. The population of each species is often referred to the "subpop-
ulation". CC optimizes one individual species at a time, while keeping the
remaining species unchanged, and the individuals in each subpopulation com-
bine with randomly selected individuals from other subpopulations to form
the complete solution, which will be evaluated by the fitness function. Some
proposed methods and applications based on CC can be found in [45][9][37].

In comparison, large-scale MOP is more difficult to handle because in single-
objective problems, the operations on the decision variables in the EA is based
only on a single objective, whereas in MOPs, the relationships of decision vari-
ables are extended to multiple objectives, different objectives need to be taken
into account simultaneously in the optimization process. In [41], a random-

32

3.4 Large-scale evolutionary algorithm techniques

based dynamic grouping (RDG) strategy is proposed as the basis for grouping
in CC, where the size of the grouping of decision variables can be randomly
selected among a set of predefined values. Thus, the decision variables are
randomly grouped into groups of different sizes. [31] also uses the advanced
grouping strategy to solve large-scale MOPs using CC.

But CC is not the only way to solve large-scale MOP. In MOPs, each species has
its own non-dominated solution set, and to finally piece together the individual
non-dominated solution sets out of the true pareto front. This may lead to
a more complex and even intractable problem. Therefore, there are many
methods that are not designed based on CC, several of them are described
below.

In 2016, H. Zille, H. Ishibuchit, S. Mostaghim and Y. Nojima presented three
mutation operators designed for problems containing large-scale variables, mul-
tiple objectives, i.e. Linked Polynomial Mutation, Grouped Polynomial Muta-
tion, and Grouped and Linked Polynomial Mutation [46]. All three methods
improve on the polynomial mutation.

In Linked Polynomial Mutation, all mutated variables have the same amount
of change. That is, all variables in the Polynomial Mutation share the same u.
The variables optimized in the second proposed approach, Grouped Polynomial
Mutation, are first grouped and then a group is uniformly selected in which all
variables are mutated according to the standard Polynomial Mutation. The
last mutation approach, Grouped and Linked Polynomial Mutation, combines
the first two approaches, in which all variables are first grouped and then the
same amount of changes is carried out on all variables within a uniformly
selected group. Two different grouping mechanisms are used, i.e. Ordered
Grouping and Differential Grouping [36], one based on the absolute values of
variables, and the other treats the grouping of variables as a single-objective
optimization problem by locating those variables that interact with each other
and then grouping them into a single group. Intuitively, although this brings
additional cost, the variables can be grouped more reasonably, i.e., according to
a objective. However, according to the experimental results, Ordered Grouping
achieves better results in most problems. Therefore, the paper also identified
how to better combine Differential Grouping with Linked Mutation as a future
research point.

In general, all three mutation methods aim to maintain the relationship be-
tween the interacting variables in different ways, thus preventing the degra-

33

3 Related Work

dation of the solution quality caused by the disruption of this relationship.
The proposed approaches perform well on problems with 1000 variables and 2
objectives.

In 2019, H. Zille and S. Mostaghim proposed another technique designed for
large-scale MOPs, which is called "Linear Combination Search Mechanism".
This technique works together with other EAs. The first step is to let any of
the EAs run for a period of time to obtain a non-dominated solution set. After
a period of learning, the solutions in the non-dominated solution set should
already be at a certain quality by this time. The proposed Linear Combination
Search Mechanism is built on the non-dominated solution set obtained from
the first step. The paper argues that the quality of solution can be further im-
proved by a proper linear combination of each solution in this set. Therefore,
in the second step, i.e., Linear Combination Search Mechanism, the optimiza-
tion problem is transformed from the original optimization problem containing
a large number of variables to finding the linear combination coefficients of the
solutions in the non-dominated solution set provided by the previous round of
evolutionary algorithms at a certain point in time.

This means that the dimensionality of the optimization problem is then trans-
formed to the size of the non-dominated solution set obtained in the previ-
ous round as well. As Figure shows, suppose that the non-dominated so-
lution set X we obtained from the first round contains three solutions, i.e.,
X1 = (x11, x

1
2, ..., x

1
n), X2 = (x21, x

2
2, ..., x

2
n), X3 = (x31, x

3
2, ..., x

3
n). Then the di-

mension of the optimization problem to be solved by the Linear Search Mecha-
nism is 3, and the non-dominated solution set Y obtained from the Linear Com-
bination Search Mechanism contains two solutions, i.e. Y 1 = (y11, y

1
2, y

1
3), Y 2 =

(y21, y
2
2, y

2
3). Then the solutions generated by X multiplying Y , i.e.:

Y 1 ·X = y11X
1 + y12X

2 + y13X
3 Y 2 ·X = y21X

1 + y22X
2 + y23X

3

, are integrated into the initial population of the next round[47].

The Linear Search Mechanism can be considered as a problem transforma-
tion ideology, so this technique is compatible with any evolutionary algorithm,
and it can also use any evolutionary algorithm to optimize the combination
coefficients. According to the evaluation of the algorithm on problems with
30-514 decision variables and 2-5 objectives, this technique can improve the
performance of existing methods.

34

3.4 Large-scale evolutionary algorithm techniques

Evolutionary
Algorithm

Linear Search
Mechanism

Non-dominated Set XNon-dominated Set Y

Figure 3.6: Linear Search Mechanism

35

3 Related Work

Algorithm 1 Non-Dominated Sorting
Require: P : Population
Ensure: F : non-dominated fronts
1: F = []
2: for p in P do
3: Sp = []
4: np = 0
5: for q i ∈ P do
6: if p < q then . If p dominates q
7: Sp.append(q) . Add q to the set of solutions dominated by p
8: else if p > q then . If q dominates p
9: np+ = 1 . Increment the domination counter of p

10: end if
11: end for
12: end for
13: if np == 0 then . p belongs to the first front
14: prank = 1

15: F1.append(p)

16: end if
17: F.append(F1)

18: i = 1 . i: the front counter
19: while F [i] do
20: Q = [] . Q: the next front
21: for p in F [i] do
22: for q in Sp do
23: nq− = 1

24: if nq == 0 then . q belongs to the next front
25: qrank = i+ 1

26: Q.append(q)

27: end if
28: end for
29: end for
30: i = i+ 1

31: Fi = Q

32: F.append(Fi)

33: end while

36

3.4 Large-scale evolutionary algorithm techniques

Algorithm 2 Crowding Distance Assignment
Require: Fi: non-dominated fronts
Require: M : objectives
1: nLen = len(I) . Number of solutions in Fi
2: for i in Fi do
3: i.distance = 0 . Initialize distance
4: end for
5: for obj in M do
6: Fi = sort(Fi, obj) . Sorting in ascending order according to the

objective obj
7: Fi[0] = Fi[nLen− 1] =∞ . Set the distance to infinity for the first

and last individual
8: for j in range(1, nlen-2) do:
9: Fi[j].distance = Fi[j].distance + (obj(Fi[j + 1]) − obj(Fi[j −

1]))/(Max(obj())−Min(obj()))

10: end for
11: end for

37

4 Implementation

The Chapter 2 described the shortcomings of the BP algorithm, the defini-
tion of the multi-objective optimization problem and the specific procedure of
EA. The main goal of this thesis is to evaluate the applicability of the large-
scale multi-objective evolutionary algorithm for training neural networks. This
chapter describes the data set to be used for the experiments in Chapter 5,
the neural network architecture, as well as the design of the algorithm used
for the experiments.

4.1 Datasets And Networks

The number of neurons in the input layer and output layer of a feedforward
neural network is usually determined by the data and the specific optimization
problem. In CNNs, although the number of parameters in the convolutional
and pooling layers is not determined by the input data, it can affect the size of
their output, which in turn affects the number of parameters in the first fully
connected layer at the end of the network after the output of the previous layer
is flattened.

In addition, the archtectures of the network also determines the number of
variables to be processed by EA, such as the number of hidden layers and
the number of neurons per layer in the feedforward network, the number of
convolutional layers and the size of each filter layer in CNNs.

As mentioned before, the performance of EA can be affected by dimensions
of the problem to be optimized. We chose datasets with different complex-
ity and neural networkswith different structures to verify its performance.
Three datasets are used, inorder of complexity, Load Digits[3], Mnist[5], and
Cifar10[26].

Load Digits is a small dataset of handwritten digits, in which each image is
a grayscale image, and represents a number between 0 and 9. Each image

39

4 Implementation

consists of 8×8 pixels, where each pixel is an interger in the range between
0 and 16. Similarly, one of the most well-known datasets in the field of deep
learning, the Mnist dataset consists of a training set with 60,000 samples and
a test set with 10,000 samples. Each sample is a grayscale image consisting of
28×28 pixels, and also represents a handwritten digit between 0 and 9.

Cifar10 is another symbolic dataset. Like Mnist, Cifar10 contains 50,000 train-
ing samples and 10,000 validation samples. But the samples in Cifar10 are
more complex. The training set is stored in five batches, each containing
10,000 images. Each image contains 3072 pixels, and consisting of three chan-
nels.The first 1024 elements are the red channel, the next 1024 elements are the
green channel, and the last 1024 elements are the blue channel. Each element
in Mnist and Cifar10 ranges from 0 to 255.

Figure 4.1: ’0’ in Load Digits

In the three datasets used, each sample has its own corresponding label as the
expectation in neural networks, which is the actual value of the handwritten
digit for Load Digits and Mnist or the true category for Cifar10. The data
in all the three datasets can be classified into 10 classes, which means that
the task to be handled by the neural network is a supervised learning multi-
classification task.

Four different neural networks including two feedforward networks as well as
two CNNs are used. The feedforward neural networks, i.e. Network I 4.1 and
Network II 4.2 contain one and two hidden layers consisting of 128 neurons,
respectively. The specific architectures of the used CNNs are shown by Tables
4.3, 4.4.

40

4.1 Datasets And Networks

Figure 4.2: ’5’ in Mnist

Figure 4.3: Samples in Cifar10

41

4 Implementation

Table 4.1: Network-I

Layer(type)
Output shape
Load Digits

Output shape
Mnist

Output shape
Cifar10

input_1 (InputLayer) (None, 64) (None, 784) (None, 3072)
dense (None, 128) (None, 128) (None, 128)
dense_1 (None, 10) (None, 10) (None, 10)
Total Parameters: 9,610 101,770 394,634

NetworkIV are taken from [18]. The other three are custom designs. Since the
datasets used are all 10 classification problems, the last layer of each network,
i.e. the output layer, consists of 10 neurons. Furthermore, it should be noted
that in Table 4.3 the global average pooling layer is used, which means that
each feature map is converted to a real number regardless of the size of of it.
The downside of this operation is that compressing the input feature maps
into a real number results in a loss of some of the information, and the amount
of information lost increases as the input size increases. But the consequent
benefit is the huge reduction in the number of parameters of the network. Thus
the performance of EAs in networks containing a relatively small number of
parameters can be observed and tested.

In the tables, the layer ’dense’ is referred to the fully connected layer and
"None" is the batch size in the experiments, which is the number of samples
used to verify each individual fitness at each time, and the specific parameter
settings will be introduced in Chapter 5. For networks 4.1 and 4.1, the number
in the second position is the size of the output of each layer, i.e., the number
of neurons in each layer. For networks 4.3 and 4.4, the last three positions
in the parentheses are the size of the output of each layer, where the last
position refers to the number of channels of the output, which corresponds to
the number of filters in the current convolutional layer. For the second row of
Load Digits in Table 4.4, e.g. (None, 8, 8, 6), "None" is the position for batch
size, (8, 8, 6) is the size of the output after processing the original samples in
the first layer, and (8, 8) is the size of each output image. This means that the
first layer contains 6 1× 1 filters.

These three datasets are all about multiple classification tasks of images, and
they all fit feedforward neural networks and CNNs. With these three datasets,
the performance of the combination of evolutionary algorithms and neural
networks can be experimented and observed from multiple aspects as the pa-

42

4.1 Datasets And Networks

Table 4.2: Network-II

Layer(type)
Output shape
Load Digits

Output shape
Mnist

Output shape
Cifar10

input_1 (InputLayer) (None, 64) (None, 784) (None, 3072)
dense (None, 128) (None, 128) (None, 128)
dense_1 (None, 128) (None, 128) (None, 128)
dense_2 (None, 10) (None, 10) (None, 10)
Total Parameters: 26122 142,542 411,146

Table 4.3: Network-III
Layer(type)

Output shape
Load Digits

Output shape
Mnist

Output shape
Cifar10

input_1 (InputLayer) (None, 8, 8, 1) (None, 28, 28, 1) (None, 32, 32, 3)
conv2d (Conv2D) (None, 6, 6, 8) (None, 26, 26, 8) (None, 30, 30, 8)
average_pooling2d (AveragePooling2D) (None, 3, 3, 8) (None, 13, 13, 8) (None, 15, 15, 8)
conv2d_1 (Conv2D) (None, 1, 1, 16) (None, 11, 11, 16) (None, 13, 13, 16)
global_average_pooling2d (GlobalAveragePooling2D) (None, 16) (None, 16) (None, 16)
dense (Dense) (None, 10) (None, 10) (None, 10)
Total Parameters: 1384 1,384 1528

Table 4.4: Network-IV

Layer(type)
Output shape
Load Digits

Output shape
Mnist

Output shape
Cifar10

input_1 (InputLayer) (None, 8, 8, 1) (None, 28, 28, 1) (None, 32, 32, 3)
conv2d (Conv2D) (None, 8, 8, 6) (None, 28, 28, 6) (None, 32, 32, 6)
average_pooling2d (AveragePooling2D) (None, 4, 4, 6) (None, 14, 14, 6) (None, 16, 16, 6)
conv2d_1 (Conv2D) (None, 4, 4, 16) (None, 14, 14, 16) (None, 16, 16, 16)
average_pooling2d (AveragePooling2D) (None, 2, 2, 16) (None, 7, 7, 16) (None, 8, 8, 16)
conv2d_2 (Conv2D) (None, 2, 2, 120) (None, 7, 7, 120) (None, 8, 8, 120)
average_pooling2d_2 (AveragePooling2D) (None, 1, 1, 120) (None, 3, 3, 120) (None, 4, 4, 120)
flatten (Flatten) (None, 120) (None, 1080) (None, 1920)
dense (Dense) (None, 120) (None, 120) (None, 120)
dense_1 (Dense) (None, 84) (None, 84) (None, 84)
dense_2 (Dense) (None, 10) (None, 10) (None, 10)
Total Parameters: 27,342 142,542 243,354

43

4 Implementation

rameters as well as the network structure change. The increasing complexity
of the three datasets used also implies an increase in the difficulty of processing
them. In order to have the ability to process more complex datasets, neural
networks may need to become deeper. For example, the network often needs to
contain many parameters to perform the Cifar10 classification task excellently.
For example, the network in [15] contains 632 million parameters and achieved
an accuracy of 99.5%, another network in this paper with 307 million param-
eters achieved an accuracy of 99.42%. But for Mnist, a network containing
1400000 parameters achieved an accuracy of 99.83% [6].

As mentioned in Chapter 2, the number of layers and the number of neurons in
a network usually represents the ability of the network to process data, but at
the same time EA shows performance degradation as the number of decision
variables increases.

The two feedforward neural networks do not have the ability to achieve good
results on the Cifar10 dataset. CNNs, although very good at processing image
data, still need to be very deep when processing more complex images. There-
fore, Network III and Netwrok IV also do not have the ability to obtain good
results with Cifar10. NetworkV though is capable of obtaining satisfactory
results on all datasets, but the huge amount of weights is certainly a challenge
for the EA.

4.2 Algorithms Design

The weight training of a neural network can be considered as an optimization
problem, where the weights can be considered as decision variables, and the
output of the network using the weights represented by the current individual
determines the fitness of this individual on a given dataset. Crossover and
mutation ensure the diversity of the gene pool, allowing a fixed network ar-
chitecture to continuously try new combinations of weights, and the selection
operator ensures performance improvement from generation to generation.

The main goal of this thesis is to verify the suitability of a multi-objective
large-scale optimization evolutionary algorithm for training neural networks,
so a multi-objective evolutionary algorithm as well as large-scale optimization
techniques need to be chosen. In this thesis, NSGA-II is chosen as well as
Grouped and Linked Mutation and Linear Combination Search Mechanism

44

4.2 Algorithms Design

introduced in Section 3.4, and a combination of these two methodes is proposed
and is introduced in Section 4.2.4. In the following, the generic design of the
optimization process will be presented first, followed by the different methods
used.

4.2.1 Encoding

The weights of the neural network are floating point values, so real value coding
is chosen. In this thesis, all weights of the network are encoded directly in a
one-dimensional array, which is the individuals in populations. The value of
each weight can be seen as a gene in the chromosome, and the dimensionality
of the individuals is equal to the number of weights of the network.

By encoding in this way, all feasible solutions have the potential to be discov-
ered by the evolutionary operators and closed under them. Each gene repre-
sents only one parameter in the entire parameter set of the neural network, and
similar genotypes represent similar phenotypes and do not have very distinct
fitness values. That is, the real value encoding also conforms to the properties
that a good encoding should have as enumerated in Section 2.4.1.

4.2.2 Fitness Function

Since all the datasets we selected are multi-classification problems, Precision
and Recall are used, metrics commonly used in classification problems, as the
fitness functions. More specifically, the goal of the evolutionary algorithm in
the optimization process is to minimize 1 - precision and 1 - recall. In each
generation, individuals in the population are sequentially imported into the
neural network as their weights. The fitness of each individual is calculated
based on the actual output of the input dataset versus the expectation. More
specifically, the Macro-average method is used to calculate precision and recall,
i.e., pi(i = 1, 2, .., n) or ri(i = 1, 2, .., n) represents each class’ own precision or
recall, and

∑n
i=1 pi
n

and
∑n
i=1 ri
n

represent the overall precision and recall achieved
by the current neural network on a certain dataset.

4.2.3 Algorithms

As mentioned before, the four genetic algorithms used are shown below:

45

4 Implementation

1. NSGA-II

2. NSGA-II with Grouped and Linked Polynomial Mutation
(GroupLinkNSGA-II)

3. NSGA-II with Grouped and Linked Polynomial Mutation and Linear
Combination-based Search Algorithm (LCSAbasedGroupLinkNSGA-II)

4. NSGA-II with Linear Combination-based Search Algorithm
(LCSAbasedNSGA-II)

5. BP

NSGA-II is used to verify the applicability of the multi-objective optimization
evolutionary algorithm itself to this problem. Algorithm 2 and 4 are based
on NSGA-II, respectively, using the two large-scale techniques introduced in
Section 3.4, to verify the impact of the large-scale techniques here on the
convergence rate, and the quality of the solution, etc. More specifically, in
Algorithm 2, Grouped and Linked Polynomial Mutation is used instead of
the Polynomial Mutation in the standard NSGA-II. In Algorithm 4, NSGA-
II is used as a step before Linear Combination Search Mechanism to provide
non-dominated solutions. Linear Combination Search Mechanism itself is also
optimized by the standard NSGA-II. Algorithm 3 will be introduced below.
Finally, the BP algorithm will also be used on the same dataset as well as
on the same networks to compare the differences with the above evolutionary
algorithms.

4.2.4 LCSAbasedGroupLinkNSGA-II

The purpose of using Algorithm 2 is to maintain the relationship between the
interacting neurons, while using Linear Search Mechanism is to reduce the
dimensionality of individuals, thus allowing the EA to further improve the
quality of the solution free from the dimensionality problem. Naturally, the
combination of these two methods is also presented in this thesis and will be
compared with other algorithms.

In the first step of this method, NSGA-II with Grouped and Linked Poly-
nomial Mutation is used to provide non-dominated solutions for the Linear
Combination Search Mechanism. The Linear Combination Search mechanism
then continue to use NSGA-II with Polynomial Mutation to find linear combi-
nation coefficients of the non-dominated solutions from the previous step, and

46

4.2 Algorithms Design

the solution derived by Linear Combination Search Mechanism are integrated
into the population at the step, and the optimization process will continue.

In this combination, we use NSGA-II with Grouped and Linked Mutation in
the first step to protect the interconnections between variables during muta-
tion. The linear combination of the non-dominated solutions can be viewed as
the value of each weight of one of the solutions mutated by the combination
of the weights at the corresponding positions of the other solutions. Since the
values of the weights at the same positions of each solution are not necessar-
ily the same, the amount of mutation of each weight is also different. Thus
whether the linear combination between different solutions would destroy the
relationship between the different variables maintained by the first step, and by
extension the quality of the solution, is a point worth noting in the experiment.

47

5 Experiment/Evaluation

In this chapter, experiments based on the dataset, network structure, and
algorithms from Chapter 4 are presented. First, the goals of the experiments
are explained. Next, the parameter settings used for the experiments are
described. Finally, the results of the experiments and the analysis of them are
shown.

5.1 Experiment Goals

In conjunction with the goals of this thesis introduced in Section 1.2, the three
algorithms described in the previous chapter will be compared with NSGA-II
to explore the performance of different evolutionary algorithm strategies along
with large-scale optimization techniques, i.e., Grouped and Linked Mutation
and Linear Search Mechanism. We also analyze empirically the convergence
rate of the algorithms demonstrated by hypervolume and the quality of the
solutions obtained by the algorithms in independent runs.

The objectives of this chapter can be generalized to the following three points:

• Compare the results obtained by the EAs with those obtained by the BP
algorithm.

This is one of the main objectives of this thesis. The suitability of the EA
for training neural networks containing a large number of parameters will
be demonstrated by the results obtained with the algorithm presented in
Chapter 4 of this thesis.

• Compare the differences between different EAs.

The application of large-scale techniques of the EA is also one of the
research points in this thesis. Based on NSGA-II, the impact of large-
scale optimization techniques on EAs when training neural networks is
reflected by the convergence rate and results of different EAs.

49

5 Experiment/Evaluation

• Study the performance of the EA during optimization.

The significance of applying different architectures and data sets also
includes exploring the variation in performance of the EA under different
circumstances. For example the effect of the number of parameters and
different network types on the results and on the speed of convergence.

5.2 Parameter Setting

The parameters used for the experiments will be presented in this section. The
five algorithms including the BP algorithm will be experimented with three
datasets and five networks respectively. We first present the general parameters
of the experiments, and then the parameters in the EAs are demonstrated.
Finally the parameters used in the BP algorithm are described.

The stopping criterion for all experiments is 100000 evaluations. NSGA-II
and GroupLinkNSGA-II both have a population size of 100 and run for 1000
generations. Referring to the original paper, the two LCSA-based algorithms
have a population size of 40 and each run alternately for 100 generations until
the number of evaluations reaches 100000. i.e., the original EA runs for 13
generations and the Linear Combination Search Mechanism runs for 12 gener-
ations. For all algorithms random initialization of the populations ensures the
diversity of the initial populations. In addition, the stopping criterion for BP
is also 100000 evaluations.

NSGA-II for all methods uses SBX with a crossover probability of 0.9 and
Polynomial Mutation with a probability of 1

n
, where n represents the number

of decision variables. In Algorithms 2 and 3, the variables are first sorted
according to their absolute values and then divided into four equal groups. If
the number of variables is not divisible by 4, the remaining variables will be
divided equally as well. For example, when the number of variables is 1003,
the first 753 variables are sorted into three groups of 251 each. The last 250
variables are divided into one group. And the distribution index for all the
mutation operators is set to 20 and for all the crossover operators is set to 15.

As mentioned above, the BP algorithm is just an efficient way to compute
gradients. Gradient descent methods use the BP algorithm to train neural
networks. Due to the size of the data contained in different datasets we use
two different methods. Mnist and Cifar10 contain a large number of samples,

50

5.3 Results

we used MGD, the batch size is set to 10000. With respect to Load Digits,
since it contains only 1797 samples, Batch Gradient Descent is used. The BP
algorithm uses the ’adam’ adaptive learning rate provided by keras[1], and the
loss function is set to categorical crossentropy.

The same applies to the EAs, namely on Minist and Cifar10, each individual
is evaluated using 10,000 samples at a time. When the dataset is Load Digits,
1797 samples are used to evaluate each individual. It is very important to
mention that for the Load Digits dataset, the training process and the results
of the algorithms are based on the entire dataset. Whereas for the Mnist and
Cifar10 datasets, the final results of all algorithms were evaluated on one batch
of the training set. There are various reasons for doing so. First, the main
goal of this thesis is to explore the possibility of using EAs to train neural
networks containing a relatively large number of weights, and we are more
concerned with the performance of EAs in the training process and the results
achieved on the training set, as well as their differences from BP algorithms
in the training process. Second, for the Mnist and Cifar10 datasets, like the
size of their own test sets, a batch consists of 10,000 samples, so one batch
has the ability to fully represent the current performance of the model. Third,
the purpose of using a test set is usually to verify whether the model has the
problem of overfitting, and our initial experimental results show that the EA
can not achieve satisfactory results on the training sets of Mnist and Cifar10,
so using a test set to verify the performance of the model in this case also loses
its main meaning.

5.3 Results

All experimental results will be presented in this section. Based on the selected
datasets, network architecturse and algorithms, there are 60 combinations.
The accuracy, precision„ recall and cross entropy obtained by the 5 algorithms
on different datasets and networks are compared. For all the tables and figures
the prefix "LCSAbased" is indicated by "L", i.e. LGroupLinkNSGA-II for
LCSAbasedGroupLinkNSGA-II and LNSGA-II for LCSAbasedNSGA-II. And
for all the tables the best performance is marked in bold, the green cells mean
that the current value is not statistically worse than the best value. All values
in the tables are the median of the corresponding metrics finally achieved by
the algorithms. The values in parentheses are the interquartile range (IQR) of

51

5 Experiment/Evaluation

the acquired data. Asterisks indicate statistical significance to algorithm that
obtained the best result. Statistical significance is tested using a one-sided
Mann-Whitney-U Test, namely whether the current result is statistically worse
than the best result. Moreover, statistical significance is assumed for a value
of p < 0.05.

Tables 5.1 5.2 5.3 5.4 show the median of the highest precision, recall, accuracy
and sparse cross entropy of different algorithms, respectively. For simplicity,
we refer to the sparse cross entropy directly as cross entropy in the following
tables and figures. Table 5.5 shows the median of the highest hypervolumes
achieved by the four EAs, the performance of the EAs. The reference point
for the hypervolumes is set to (precision = 1, recall = 1).

Figure A.0.1 - A.0.12, show the variation over time of the corresponding metrics
for the runs of the EAs that delivered the median hypervolumes, and the BP-
based algorithm that delivered the median losses. Furthermore, the variation
of hypervolumes of EAs are also shown in these figures using the runs that
obtained the median hypervolumes. All figures are placed in the Appendix, but
for the convenience of reading, some are also placed in this chapter. Namely,
the variations of hypervolumes for different EAs can also be found in Figure
5.3 - Figure 5.17.

52

5.3
R

esults

Table 5.1: Median and IQR Values of the Precision
Datasets NSGA-II GroupLinkNSGA-II LGroupLinkNSGA-II LNSGA-II BP

Load Digits

Network-I 0.812909*(0.123152) 0.823192*(0.101071) 0.752023*(0.12307) 0.785645*(0.094069) 1.0(0)
Network-II 0.806179*(0.060999) 0.913363*(0.021554) 0.697385*(0.123820) 0.705958*(0.072404) 1.0(0)
Network-III 0.704370*(0.161957) 0.799547*(0.170653) 0.641068*(0.070010) 0.658810*(0.130588) 1.0(0)
Network-IV 0.010184(0) 0.010184(0) 0.010184(0) 0.010184(0) 0.009683*(0)

Mnist

Network-I 0.855494*(0.062186) 0.891253*(0.056009) 0.665873*(0.047591) 0.751198*(0.068068) 1.0(0)
Network-II 0.800167*(0.074733) 0.840366*(0.081702) 0.627655*(0.069820) 0.714800*(0.071027) 1.0(0)
Network-III 0.311560*(0.054902) 0.429949*(0.110601) 0.389353*(0.106447) 0.334900*(0.042572) 0.974035(0.005660)
Network-IV 0.552361*(0.138872) 0.622950*(0.085122) 0.500845*(0.092759) 0.534918*(0.105963) 0.822531(0.003439)

Cifar10

Network-I 0.554766*(0.077114) 0.567374*(0.068315) 0.471833*(0.107279) 0.530502*(0.095679) 0.681802(0.088059)
Network-II 0.551142*(0.092026) 0.566742*(0.118291) 0.464489*(0.075062) 0.527004*(0.080876) 0.754934(0.249271)
Network-III 0.396763*(0.095720) 0.440374*(0.061039) 0.391606*(0.077946) 0.371845*(0.086917) 0.579661(0.023721)
Network-IV 0.524921*(0.091339) 0.518470*(0.082588) 0.433002*(0.072390) 0.442024*(0.065164) 0.955768(0.042355)

53

5
E

xperim
ent/E

valuation

Table 5.2: Median and IQR Values of the Recall
Datasets NSGA-II GroupLinkNSGA-II LGroupLinkNSGA-II LNSGA-II BP

Load Digits

Network-I 0.694065*(0.130328) 0.773579*(0.059196) 0.616726*(0.070181) 0.621765*(0.060610) 1.0(0)
Network-II 0.684036*(0.073602) 0.795826*(0.096343) 0.559762*(0.100018) 0.580659*(0.070825) 1.0(0)
Network-III 0.595526*(0.097675) 0.663891*(0.103974) 0.512260*(0.073198) 0.529100*(0.080168) 1.0(0)
Network-IV 0.100000(0) 0.100000(0) 0.100000(0) 0.100000(0) 0.100000(0)

Mnist

Network-I 0.635407*(0.080200) 0.641650*(0.072121) 0.451311*(0.037295) 0.506785*(0.058395) 1.0(0)
Network-II 0.531139*(0.059299) 0.570037*(0.106353) 0.401700*(0.058013) 0.472707*(0.083809) 1.0(0)
Network-III 0.344650*(0.047539) 0.373035*(0.064843) 0.334260*(0.039011) 0.295657*(0.054057) 0.973845(0.005692)
Network-IV 0.392684*(0.052696) 0.431667*(0.045667) 0.338274*(0.035396) 0.367580*(0.043737) 0.819279(0.003639)

Cifar10

Network-I 0.221661*(0.027065) 0.210466*(0.027547) 0.193603*(0.013441) 0.201558*(0.015076) 0.677300(0.081040)
Network-II 0.222373*(0.022724) 0.212765*(0.016997) 0.183138*(0.017983) 0.200888*(0.014008) 0.754240(0.254880)
Network-III 0.224004*(0.023204) 0.234308*(0.025414) 0.210758*(0.013539) 0.208850*(0.015643) 0.585020(0.023300)
Network-IV 0.224072*(0.020842) 0.218299*(0.020767) 0.203201*(0.022857) 0.203784*(0.015111) 0.955280(0.042760)

54

5.3
R

esults

Table 5.3: Median and IQR Values of the Accruracy
Datasets NSGA-II GroupLinkNSGA-II LGroupLinkNSGA-II LNSGA-II BP

Load Digits

Network-I 0.692265*(0.134669) 0.760712*(0.069004) 0.619366*(0.074012) 0.622148*(0.065109) 1.0(0)
Network-II 0.680579*(0.074012) 0.762382*(0.135782) 0.557596*(0.101836) 0.578742*(0.072343) 1.0(0)
Network-III 0.595437*(0.100167) 0.622148*(0.098497) 0.510851*(0.069560) 0.527546*(0.081247) 1.0(0)
Network-IV 0.101836(0) 0.101836(0) 0.101836(0) 0.101836(0) 0.096828*(0)

Mnist

Network-I 0.646600*(0.083900) 0.615700*(0.098600) 0.462100*(0.035700) 0.513900*(0.053100) 1.0(0)
Network-II 0.540100*(0.067600) 0.530900*(0.135600) 0.415100*(0.053400) 0.484300*(0.084300) 1.0(0)
Network-III 0.344800*(0.052300) 0.339600*(0.048700) 0.349800*(0.046600) 0.310600*(0.051500) 0.973900(0.004917)
Network-IV 0.398900*(0.048700) 0.369500*(0.124600) 0.351300*(0.034000) 0.376900*(0.046800) 0.820850(0.003300)

Cifar10

Network-I 0.223400*(0.023400) 0.200400*(0.039400) 0.194100*(0.015200) 0.200800*(0.016500) 0.687400(0.072720)
Network-II 0.219600*(0.018100) 0.144200*(0.063900) 0.184800*(0.012600) 0.203100*(0.014800) 0.758180(0.229319)
Network-III 0.225900*(0.022200) 0.216200*(0.043300) 0.212800*(0.013800) 0.210500*(0.020700) 0.584220(0.019800)
Network-IV 0.224000*(0.018800) 0.196500*(0.068900) 0.205600*(0.025900) 0.206600*(0.016300) 0.963180(0.022740)

55

5
E

xperim
ent/E

valuation

Table 5.4: Median and IQR Values of the Sparse Cross Entropy
Datasets NSGA-II GroupLinkNSGA-II LGroupLinkNSGA-II LNSGA-II BP

Load Digits

Network-I 4.825046*(2.178484) 3.889904*(1.195232) 9.554366*(1.162265) 9.553262*(1.861953) 7.85-07(8.84e-07)
Network-II 5.121771*(1.155196) 3.733891*(2.214670) 7.310092*(1.621064) 6.5835690*(1.166025) 2.19e-09(1.72e-09)
Network-III 6.136486*(2.105881) 4.896635*(2.068229) 7.561236*(2.726746) 7.450176*(1.802853) 8.62e-09(5.71e-09)
Network-IV 14.476695*(0) 14.476695*(0) 14.476695*(0) 14.476695*(0) 2.302485(2.38e-07)

Mnist

Network-I 5.023498*(1.353680) 5.333379*(1.520316) 8.437825*(1.636688) 7.769745*(1.026578) 5.29e-09(2.92e-10)
Network-II 7.233501*(1.117515) 7.136312*(2.747428) 9.300287*(1.304872) 8.312119*(1.359001) 2.37e-09(1.24e-09)
Network-III 2.803399*(0.504067) 2.294361*(0.030706) 2.610348*(1.075024) 2.955021*(2.036813) 0.084723(0.018320)
Network-IV 9.073910*(1.549884) 3.822587*(2.862825) 2.407509*(6.104386) 9.48391*(1.479647) 0.498663(0.009614)

Cifar10

Network-I 12.130472*(0.586608) 11.402417*(6.004159) 2.437667*(0.151389) 12.633842*(0.532989) 0.860224(0.192517)
Network-II 12.495234*(0.330149) 12.913002*(1.967161) 4.305560*(2.453097) 12.772014*(0.265141) 0.689151(0.610990)
Network-III 2.606194*(1.592817) 2.334268*(0.198116) 2.302332*(0.077286) 3.086458*(1.975569) 1.182215(0.049221)
Network-IV 11.819444*(2.179063) 7.075566*(10.483262) 2.333559*(3.734024) 7.581497*(8.367398) 0.158344(0.065668)

56

5.3 Results

Table 5.5: Median and IQR Values of the Hypervolumes of the Evolutionary
Algorithms

Datasets NSGA-II GroupLinkNSGA-II LGroupLinkNSGA-II LNSGA-II

Load Digits

Network-I 0.577558*(0.182405) 0.677845(0.116770) 0.455891*(0.115107) 0.472723*(0.110415)
Network-II 0.530660*(0.118815) 0.710358(0.125104) 0.366519*(0.113490) 0.409219*(0.118815)
Network-III 0.412469*(0.176168) 0.542358(0.200112) 0.310138*(0.052671) 0.345965*(0.133281)
Network-IV 0.001018(0) 0.001018(0) 0.001018(0) 0.001018(0)

Mnist

Network-I 0.534402(0.085378) 0.5449445(0.094772) 0.293618*(0.030892) 0.374805*(0.059133)
Network-II 0.414122(0.090935) 0.460198(0.133754) 0.238863*(0.079129) 0.336512*(0.089500)
Network-III 0.104952*(0.037001) 0.161945(0.072958) 0.123047*(0.043498) 0.092595(0.030233)
Network-IV 0.208508*(0.073681) 0.247629(0.050216) 0.162910*(0.043104) 0.192804*(0.040330)

Cifar10

Network-I 0.122391(0.029481) 0.119721(0.016411) 0.093120*(0.026937) 0.104229*(0.023421)
Network-II 0.118879(0.028213) 0.113592(0.029297) 0.078917*(0.014740) 0.103582*(0.018065)
Network-III 0.084721*(0.025927) 0.101537(0.020264) 0.076033*(0.015814) 0.073602*(0.019493)
Network-IV 0.114244(0.028890) 0.103253(0.011701) 0.087426*(0.015468) 0.087752*(0.009367)

5.3.1 Comparison of the EA and the BP Algorithm

According to Table 5.1 - 5.4, Figure A.0.4 show that for this combination,
all algorithms fail to converge and the IQR values of the results obtained
in 21 independent runs are all 0. Moreover, Figure 5.20 shows that, finally,
all individuals of the population in the final generation of the NSGA-II have
the same precision and recall, and all other EAs behave exactly the same
way. Furthermore, different algorithms always reach the same value on this
combination and fail to further convergence, or even change. Similarly, the
cross entropy of the BP algorithm also remains the same after the super small
changes in the first few steps.

Because we use random initialization, all individuals in a population must
contain different combinations of weights in the 21 independent runs of opti-
mization, and most of the time, except for the first few steps of the BP algo-
rithm, the network always stubbornly outputs the same result regardless of the
weights it consists of. This means that for the combination of Network-IV and
Digits, the network cannot extract useful information of the input image, or
the network contains too many convolutional and pooling layers, and the input
information is processed layer after layer, and finally the 120 values generated
before the fully connected layers cannot effectively represent the different fea-
tures between different digits. Because the comparison of the results of this
combination with those of other combinations has no other meaning for the
goals of this thesis, it is excluded from the following comparisons.

57

5 Experiment/Evaluation

It is noticeable that for all combinations, the BP algorithm outperforms the
EAs. This is reflected in all used metrics. In comparision with the EAs,
the BP algorithm converges much faster and converges quickly to the optimal
values of accuracy, precision, and recall for the combinations of Load Digits
and Network-I, II, III. Mnist and Network-I, II. Furthermore, as we can see
from the hypervolumes of the Figure 5.3-5.17, although still not comparable
to the BP algorithm, EA can have a faster convergence rate in the early stages
of optimization, but when the algorithm reaches a certain level of fitness,
the convergence rate shows a very noticeable decrease. Certainly, there are
differences between different EAs, and these are further illustrated in Seciton
5.3.2.

Moreover, Figure 5.19 shows the non-dominated front achieved by NSGA-II on
Mnist and Network-IV, which also reflects the trade-off between two conflicting
objectives in the optimization process of the EA. This is an advantage that
the EA has over the BP algorithm.

However, the EAs reflect a large gap with the BP algorithm in optimizing
CNN. In Table 5.1, 5.2, 5.3, Load Digits and Network-II and III, for example,
it is shown by the BP algorithm that both Network-II and III have the ability
to achieve a precision recall and accuracy of 1. And in this case, Network-II
contains 26122 parameters, while Network-III contains only 1384 parameters,
and the EAs are expected to perform better on Network-III. However, the
opposite result is achieved, and the EAs perform considerably worse on the two
CNNs than the feedforward neural networks with more parameters. Similarly,
in the tables, a similar phenomenon is observed for the Mnist dataset, and
even stronger. With similar results obtained by the BP algorithm, the gap
between the EAs and the BP algorithm on the feedforward neural network
and the CNN is further widened.

This may be due to the nature of parameter sharing of CNNs, where the
values of the parameters of each convolutional layer need to be applied to
different pixels of the input during the optimization process, and multiple
pixels need to be taken into account in optimizing the convolutional layers.
The consequent change in the value of one convolutional layer is more likely to
cause degradation of the solution quality compared to the feedforward neural
network, and the presence of multiple conflicting objectives also potentially
exacerbates this problem. As results, it is more difficult for the EAs to find
the direction to improve the quality of the solutions in this trade-off.

58

5.3 Results

Figure 5.1: Hypervolumes of Load Digits

Figure 5.2: Legend Figure 5.3: Network-I

Figure 5.4: Network-II Figure 5.5: Network-III

59

5 Experiment/Evaluation

Figure 5.6: Hypervolumes of Mnist

Figure 5.7: Legend Figure 5.8: Network-I

Figure 5.9: Network-II Figure 5.10: Network-III

Figure 5.11: Network-IV

60

5.3 Results

Figure 5.12: Hypervolumes of Cifar10

Figure 5.13: Legend Figure 5.14: Network-I

Figure 5.15: Network-II Figure 5.16: Network-III

Figure 5.17: Network-IV

61

5 Experiment/Evaluation

Figure 5.18: Non-dominated Solutions of NSGA-II

Figure 5.19: Network-IV and Mnist Figure 5.20: Network-IV and Load
Digits

NSGA-II and GroupLinkNSGA-II achieved acceptable results on the Load
Digits dataset, but the gap between EA and BP increased with the dataset
and network complexity. In general, there is still a gap between EAs and BP
in optimizing neural networks.

5.3.2 Comparison of the differences between different
EAs

The experiments use the different four EAs mentioned in Chapter 4. Accord-
ing to the experimental results there are also some differences between them.
According to Table 5.5, in most combinations, Grouped and Linked Mutation
can improve the performance of the original NSGA-II by maintaining the rela-
tionships between parameters of the networks during the optimization process,
and for both Digits and Mnist datasets, the median hypervolume obtained by
GroupLinkNSGA-II is statistically superior to that of NSGA-II and the other
two using Linear Combination Search Mechanism. Furthermore, as can be seen
in Figure 5.3 - 5.17, in most cases, GroupLinkNSGA-II converges more slowly
compared to NSGA-II in the early stages of optimization, but it maintains the
momentum of convergence when other EAs stop converging.

Regarding LCSA, as presented in Section 5.2, the EA and this mechanism are
each run in 100 alternating generations, for a total of 2500 generations. Figure
5.21 and 5.22 show the hypervolume achieved by each of these two on different

62

5.3 Results

combinations of datasets and networks during the optimization process using
different colors, where LCSA1 corresponds to the Linear Combination Search
Mechanism of GroupLinkNSGA-II and LCSA2 corresponds to the Linear Com-
bination Search Mechanism of NSGA-II. It should be clarified that each time
LCSA starts, it randomly generates a number of linear combination coefficients
of population size, e.g. 40. Its initial population is then the combination of
the non-dominated set provided by the previous evolutionary algorithm and
these randomly generated coefficients. As can be seen in the figure, some-
times LCSA1 and LCSA2 are not connected to the EA with which they are
combined. The beginning of these breaks in the figures represents the start of
the LCSA, and the algorithm starts to search for more linear combinations of
factors from the randomly generated initial population. In some figures, the
breaks appear at both ends of LCSA1 and LCSA2. This is because when the
LSCA ends, if the optimal linear combinations obtained are still worse than
the non-dominated solutions provided by its previous EA, then the selection
operator of the original EA, i.e., the selection operator of GroupLinkNSGA-II
and NSGA-II, selects the non-dominated set of the previous EA as the initial
population for the next step, which then forms the end of the breaks.

From these figures, it can be seen that the hypervolumes can be improved by
LCSA during the first few rotations, but thereafter LCSA does not provide any
further improvement in solution quality by finding linear combinations of the
non-dominated solution sets provided by the previous step. Another notewor-
thy issue is that, as seen in Table 5.5 and Figure 5.21 5.22, LGroupLinkNSGA-
II performs less well than LNSGA-II. This validates, to some extent, the con-
jecture raised at the end of Section 4.2.4 that LCSA has the potential to
disrupt the relationship between variables maintained by GroupLinkNSGA-II.
In LGroupLinkNSGA-II, the relationships between the different variables orig-
inally maintained by the GroupLinkNSGA-II are not considered in the process
of LCSA. This means that the relationships between the different variables
in the individuals provided by the LCSA received by the GroupLinkNSGA-II
may already be destroyed, which prevents GroupLinkNSGA-II from further
improving the quality of the solution by maintaining the relationships between
the variables on its original basis. Another phenomenon that supports this
conjecture is that the difference between the hypervolumes at the beginning
of the breaks of LGroupLinkNSGA-II in the figures, that is, the hypervolumes
at the beginning of LCSA1, and the hypervolumes at the previous step of
GroupLinkNSGA-II are much larger than that at LNSGA-II, i.e. NSGA-II

63

5 Experiment/Evaluation

and LCSA2. That is, the quality of the solution decays more severely due to
the destruction of the relationship between the variables.

It is also worth noting that the original EA, i.e., GroupLinkNSGA-II and
NSGA-II, cannot converge further when the hypervolume reaches a certain
value, although this is the hypervolume which is still much smaller than the
value that the original EA can reach, as shown in Table 5.5. The reason for
this problem may be that the solution set provided by LCSA to the next step
of the original EA, i.e., the solution derived by linear combination, may cause
a reduction in the initial population diversity of the next step of the original
EA. In addition, the relatively small population size (40) and the huge amount
of parameters of the neural network are likely to aggravate this situation. The
reduction in population diversity makes it difficult for the algorithm to escape
from local optima, which affects the quality of the final solution.

Overall, according to the experiments, GroupLinkNSGA-II shows its improve-
ment over the original EA in most combinations. While LCSA-based algo-
rithms perform less well than NSGA-II and GroupLinkNSGA-II.

5.3.3 Variation of the Performance of EAs

According to the experimental results, in general, the performance of EA is
affected by the type of network as well as the number of parameters. The
effect of network type on CNN has been mentioned in Section 5.3.1. The effect
caused by the number of parameters on EA is focused on in this subsection.

According to Table 5.5, for Network-I and II, the performance of the EAs de-
crease along with the number of parameters in most cases. GroupLinkNSGA-
II performs significantly better for Network-II than Network-I under Digits
dataset, while Network-II performs weaker than Network-I under Mnist and
Cifar10 datasets. This may be due to the 26122 variables GroupLinkNSGA-II
can still handle for the combined Digits and Network-II. While under Mnist
and Cifar10, the difference in the number of parameters between Network-I
and II is too large, which affects the performance of the algorithm. Interest-
ingly for the two CNNs under the Mnist and Cifar10 datasets, the used EAs
outperform Network-IV than Network-III, although Network-IV has a much
larger number of parameters than III.

64

5.3 Results

Figure 5.21: Hypervolume of LCSAbased-Algorithms over time

65

5 Experiment/Evaluation

Figure 5.22: Hypervolume of LCSAbased-Algorithms over time

66

5.3 Results

For the two combinations with the most parameters of among all combinations,
namely Cifar10 and Network-II and IV, the EAs achieve solutions of much
lower quality than the BP algorithm.

And from the comparison of hypervolumes in each EA in Figures 5.3 and 5.4,
5.8 and 5.9, the convergence of the EAs slows down as the parameters increase.
Similarly, for all networks, EAs with Cifar10 converges slower than that with
Mnist, and EAs with Mnist converges slower than that with Load Digits.

5.3.4 Summary

In general, this chapter compares and analyzes the differences between the EA
and the BP algorithms based on the experimental results. The results obtained
show the gap between the EA and the BP algorithms in terms of training
neural network weights. When using the feedforward neural network for the
Load Digits dataset, the used EAs can achieve relatively good results, although
its convergence rate is much slower than that of the BP algorithm. On the
relatively more complex datasets, the performance of EAs is attenuated by the
number of decision variables and is significantly inferior to the BP algorithm.
In addition, we analyze the reasons why the used EAs achieved lower than
expected results on CNNs despite the fact that they contain fewer variables.
Namely, the feature of parameter sharing of the convolutional layer result in
each weight affecting multiple input pixels simultaneously, and in optimization,
the EAs need not only to make trade-offs between conflicting objectives, but
also to consider the impact of each variable on different pixels. We also show
the tradeoff of EAs between conflicting objectives through the non-dominated
front obtained by NSGA-II, which is one of the advantages of the EA over the
BP algorithm.

The differences between the different EAs are also analyzed in this chapter,
and the results show that Grouped and Linked Polynomial Mutation can bring
improvements to NSGA-II in most combinations, but the consequent short-
coming is its slow convergence in the early stages of optimization. For the
LCSA-based algorithms, the combination of LCSA and GroupLinkNSGA-II
performs relatively poorly, most likely due to the disruption of the interaction
between variables by LCSA.

Finally, the effects of the number of parameters on the EA are also observed.
Although the used EAs can still converge on the experimental combination

67

5 Experiment/Evaluation

containing the most parameters, the decay caused by the increase in the num-
ber of parameters on the convergence rate of the algorithm is also evident.

68

6 Conclusion & Future Work

In this thesis, the performance of training neural networks with fixed architec-
tures and a large number of parameters using multi-objective EAs is explored
and the results are compared with a BP-based training algorithm. The thesis
treats neural network weights training as an MOP, and use NSGA-II and al-
gorithms designed for large-scale optimization problems to solve this MOP. In
addition, the thesis proposes a combination based on the cited large-scale opti-
mization techniques, and the proposed approach attempts to further optimize
the solution quality by finding linear combinations of the set of non-dominated
solutions obtained by the EA at a certain point in time while maintaining the
relationships between the variables in the large-scale optimization problem.
The different performances of these EAs used in training neural networks are
also analyzed. Furthermore, the performance of the different algorithms in the
optimization process and the factors contributing to it are also focused. This
includes the type of networks, the number of parameters and the interactions
between algorithms.

This thesis concludes that EAs can obtain acceptable results on simpler data
sets and that trade-offs between conflicting objectives can be made during
the training process. Moreover, large-scale optimization techniques can bring
some improvements to evolutionary algorithms for neural network optimiza-
tion. However, there is a gap between the EA and the BP-based algorithm
when there are too many parameters and when faced with more complex net-
works and datasets. That is, there is a significant decay in the performance
of EA with the growth of parameters, and the gap with the BP algorithm is
further widened again. Although the proposed combination method is worse
than the other algorithms used, we have explored and analyzed the reasons
for this. From another perspective, the improvement brought by using large-
scale optimization techniques to multi-objective EAs also offers hope for the
application of EAs to this particular problem.

69

6 Conclusion & Future Work

Future work based on this thesis could be to explore the specific reasons why
EAs achieve poorer results on CNNs compared to those on feedforward neu-
ral networks, and their specific behavior when training CNNs. Regarding the
LCSA-based algorithm, it is worth examining whether LSCA causes a de-
crease in population diversity, and whether the performance and results of the
algorithms are directly related to the population diversity. In addition, the
difference between LGroupLinkNSGA-II and LNSGA-II can also be a part of
this future work.

Moreover, the datasets selected in this thesis are all balanced datasets, and
sparse cross entropy measures the distance between the actual output dis-
tribution and the expected output distribution, and the BP-based algorithm
uses this metric as the loss function to some extent implying simultaneous opti-
mization for precision, recall and accuracy. However, it is also worth exploring
whether the EA can fully exploit its advantages of multi-objective optimization
when it comes to certain specific problems with unbalanced datasets.

70

Appendix

71

Figure A.0.1: Network-I + Load Digits

73

Figure A.0.2: Network-II + Load Digits

74

Figure A.0.3: Network-III + Load Digits

75

Figure A.0.4: Network-IV + Load Digits

76

Figure A.0.5: Network-I + Mnist

77

Figure A.0.6: Network-II + Mnist

78

Figure A.0.7: Network-III + Mnist

79

Figure A.0.8: Network-IV + Mnist

80

Figure A.0.9: Network-I + Cifar

81

Figure A.0.10: Network-II + Cifar

82

Figure A.0.11: Network-III + Cifar

83

Figure A.0.12: Network-IV + Cifar

84

Bibliography

[1] Adam, https://keras.io/api/optimizers/adam/, accessed: 2021-02-14.

[2] Distributed tensorflow, https://www.oreilly.com/content/distributed-
tensorflow/, accessed: 2021-01-17.

[3] Examples using sklearn.datasets.loaddigits, https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.load_digits.html,
accessed: 2021-01-14.

[4] sklearn.metrics.precision_score, https://scikit-
learn.org/stable/modules/generated/sklearn.metrics.precisionscore,
accessed: 2021-01-14.

[5] The mnist database, http://yann.lecun.com/exdb/mnist/, accessed:
2021-01-14.

[6] Yahia Assiri. Stochastic optimization of plain convolutional neural net-
works with simple methods. arXiv preprint arXiv:2001.08856, 2020.

[7] Thomas M Breuel. The effects of hyperparameters on sgd training of
neural networks. arXiv preprint arXiv:1508.02788, 2015.

[8] Qi Chen, Mutao Huang, and Ronghui Wang. Genetic algorithm–back
propagation (ga-bp) neural network for chlorophyll-a concentration inver-
sion using landsat 8 oli data. In E3S Web of Conferences, volume 143,
page 02002. EDP Sciences, 2020.

[9] Wenxiang Chen, Thomas Weise, Zhenyu Yang, and Ke Tang. Large-scale
global optimization using cooperative coevolution with variable interac-
tion learning. In International Conference on Parallel Problem Solving
from Nature, pages 300–309. Springer, 2010.

[10] Balázs Csanád Csáji et al. Approximation with artificial neural networks.
Faculty of Sciences, Etvs Lornd University, Hungary, 24(48):7, 2001.

85

Bibliography

[11] Kalyanmoy Deb and Hans-Georg Beyer. Self-adaptive genetic algorithms
with simulated binary crossover. Evolutionary computation, 9(2):197–221,
2001.

[12] Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search
(geneas) for engineering design. Computer Science and informatics, 26:30–
45, 1996.

[13] Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective
optimization algorithm using reference-point-based nondominated sorting
approach, part i: solving problems with box constraints. IEEE transac-
tions on evolutionary computation, 18(4):577–601, 2013.

[14] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

[16] Emmanuel Dufourq and Bruce A Bassett. Eden: Evolutionary deep net-
works for efficient machine learning. In 2017 Pattern Recognition Associa-
tion of South Africa and Robotics and Mechatronics (PRASA-RobMech),
pages 110–115. IEEE, 2017.

[17] Agoston E Eiben and James E Smith. Introduction to evolutionary com-
puting. Springer, 2015.

[18] Parsa Esfahanian and Mohammad Akhavan. Gacnn: Training deep
convolutional neural networks with genetic algorithm. arXiv preprint
arXiv:1909.13354, 2019.

[19] Ashish Ghosh and Mrinal Kanti Das. Non-dominated rank based sorting
genetic algorithms. Fundamenta Informaticae, 83(3):231–252, 2008.

[20] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li,
Qingfu Zhang, and Jing-Jing Li. Distributed evolutionary algorithms and
their models: A survey of the state-of-the-art. Applied Soft Computing,
34:286–300, 2015.

86

Bibliography

[21] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[22] Jatinder ND Gupta and Randall S Sexton. Comparing backpropagation
with a genetic algorithm for neural network training. Omega, 27(6):679–
684, 1999.

[23] Yaochu Jin and Bernhard Sendhoff. Pareto-based multiobjective machine
learning: An overview and case studies. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 38(3):397–415,
2008.

[24] Yasusi Kanada. Optimizing neural-network learning rate by using a ge-
netic algorithm with per-epoch mutations. In 2016 International Joint
Conference on Neural Networks (IJCNN), pages 1472–1479. IEEE, 2016.

[25] Heung Bum Kim, Sung Hoon Jung, Tag Gon Kim, and Kyu Ho Park.
Fast learning method for back-propagation neural network by evolutionary
adaptation of learning rates. Neurocomputing, 11(1):101–106, 1996.

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of fea-
tures from tiny images. 2009.

[27] Rudolf Kruse, Christian Borgelt, Christian Braune, Sanaz Mostaghim,
and Matthias Steinbrecher. Computational intelligence: a methodological
introduction. Springer, 2016.

[28] Jan Karel Lenstra and AHG Rinnooy Kan. Some simple applications
of the travelling salesman problem. Journal of the Operational Research
Society, 26(4):717–733, 1975.

[29] Frank Hung-Fat Leung, Hak-Keung Lam, Sai-Ho Ling, and Peter Kwong-
Shun Tam. Tuning of the structure and parameters of a neural network
using an improved genetic algorithm. IEEE Transactions on Neural net-
works, 14(1):79–88, 2003.

[30] Jing Li, Ji-hang Cheng, Jing-yuan Shi, and Fei Huang. Brief introduction
of back propagation (bp) neural network algorithm and its improvement.
In Advances in computer science and information engineering, pages 553–
558. Springer, 2012.

[31] Ruochen Liu, Rui Ren, Jin Liu, and Jing Liu. A clustering and di-
mensionality reduction based evolutionary algorithm for large-scale multi-
objective problems. Applied Soft Computing, 89:106120, 2020.

87

Bibliography

[32] Chun Lu, Bingxue Shi, and Lu Chen. Hybrid bp-ga for multilayer feedfor-
ward neural networks. In ICECS 2000. 7th IEEE International Confer-
ence on Electronics, Circuits and Systems (Cat. No. 00EX445), volume 2,
pages 958–961. IEEE, 2000.

[33] George D. Magoulas, Michael N. Vrahatis, and George S Androulakis. Im-
proving the convergence of the backpropagation algorithm using learning
rate mptation methods. Neural Computation, 11(7):1769–1796, 1999.

[34] Tadahiko Murata and Hisao Ishibuchi. Moga: Multi-objective genetic al-
gorithms. In IEEE international conference on evolutionary computation,
volume 1, pages 289–294, 1995.

[35] Richard E Nisbett and Timothy DWilson. Telling more than we can know:
verbal reports on mental processes. Psychological review, 84(3):231, 1977.

[36] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, and Xin Yao. Cooper-
ative co-evolution with differential grouping for large scale optimization.
IEEE Transactions on evolutionary computation, 18(3):378–393, 2013.

[37] Mitchell A Potter. The design and analysis of a computational model of
cooperative coevolution. PhD thesis, Citeseer, 1997.

[38] Herbert Robbins and Sutton Monro. A stochastic approximation method.
The annals of mathematical statistics, pages 400–407, 1951.

[39] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning
rates. In International Conference on Machine Learning, pages 343–351,
2013.

[40] V Skorpil, V Oujezsky, P Cika, and M Tuleja. Parallel processing of ge-
netic algorithms in python language. In 2019 PhotonIcs & Electromagnet-
ics Research Symposium-Spring (PIERS-Spring), pages 3727–3731. IEEE,
2019.

[41] An Song, Qiang Yang, Wei-Neng Chen, and Jun Zhang. A random-based
dynamic grouping strategy for large scale multi-objective optimization.
In 2016 IEEE Congress on Evolutionary Computation (CEC), pages 468–
475. IEEE, 2016.

[42] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life,
15(2):185–212, 2009.

88

Bibliography

[43] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks
through augmenting topologies. Evolutionary computation, 10(2):99–127,
2002.

[44] Ye Tian, Xingyi Zhang, Chao Wang, and Yaochu Jin. An evolutionary al-
gorithm for large-scale sparse multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation, 24(2):380–393, 2019.

[45] Zhenyu Yang, Jingqiao Zhang, Ke Tang, Xin Yao, and Arthur C Sander-
son. An adaptive coevolutionary differential evolution algorithm for large-
scale optimization. In 2009 IEEE Congress on Evolutionary Computation,
pages 102–109. IEEE, 2009.

[46] Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim, and Yusuke Nojima. Mu-
tation operators based on variable grouping for multi-objective large-scale
optimization. In 2016 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 1–8. IEEE, 2016.

[47] Heiner Zille and Sanaz Mostaghim. Linear search mechanism for multi-and
many-objective optimisation. In International Conference on Evolution-
ary Multi-Criterion Optimization, pages 399–410. Springer, 2019.

[48] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fonseca, and
Viviane Grunert Da Fonseca. Performance assessment of multiobjective
optimizers: An analysis and review. IEEE Transactions on evolutionary
computation, 7(2):117–132, 2003.

89

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goals
	Structure of Thesis

	Fundamentals
	Neural Networks
	Feed-Forward Neural Networks
	Convolutional Neural Networks

	Backpropagation(BP) Algorithm
	Multi-Objective Optimization
	Evolutionary Algorithms
	Encoding
	Fitness Function
	Selection for Reproduction
	Crossover
	Mutation
	Environmental Selection
	Termination Criterion

	Performance Metrics

	Related Work
	Neural network hyperparameters
	Neural network weights
	Multi-Objective Evolutionary Algorithm
	Large-scale evolutionary algorithm techniques

	Implementation
	Datasets And Networks
	Algorithms Design
	Encoding
	Fitness Function
	Algorithms
	LCSAbasedGroupLinkNSGA-ii

	Experiment/Evaluation
	Experiment Goals
	Parameter Setting
	Results
	Comparison of the EA and the BP Algorithm
	Comparison of the differences between different EAs
	Variation of the Performance of EAs
	Summary

	Conclusion & Future Work
	Appendices
	Bibliography

