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Abstract

External localization is an essential part for the indoor operation of small or
cost-efficient robots, as they are used, for example, in swarm robotics. We
introduce a two-stage localization and instance identification framework for
arbitrary robots based on convolutional neural networks. Object detection is
performed on an external camera image of the operation zone, providing robot
bounding boxes for an identification and orientation estimation convolutional
neural network. Additionally, we propose a process to generate the necessary
training data. The framework was evaluated with 3 different robot types and
various identification patterns. We have analyzed the main framework hyper-
parameters providing recommendations for the framework operation settings.
We achieved up to 98% mAPQIOUO.5 and only 1.6° orientation error, running
with a frame rate of 50 Hz on a GPU.
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1 Introduction

Localization is an essential problem in robotics. The knowledge, where the
robot is located and how it is oriented, is substantial for its interaction with
the environment. The combination of an object’s position and orientation is
called pose. Many navigation and motion planning algorithms rely on that in-
formation. For outdoor robotics, localization is conveniently feasible using the
Global Positioning System (GPS). However, there is usually no GPS reception
available indoors due to the weak GPS signal and hence other methods have
to be utilized. Furthermore, indoor localization has to deal with smaller error
margins as the operation zone is usually more confined.

Indoor robot localization systems can utilize several approaches to overcome
these problems. For instance, they can be implemented using radio signals (e.g.
Bluetooth, RFID, or WiF1i), visual sensors (2D cameras, RGB-D cameras, or
stereo cameras), or other on-board sensors such as laser scanners or ultrasonic
ranging sensors [9]. This thesis focuses on the localization of multiple robots,
in particular in the field of swarm robotics. As swarm robots are usually
small and cost-efficiently built, they do not have sophisticated sensors for self-
localization such as LIDAR. Therefore, an external localization approach based
on cameras was chosen. Even though there already are precise and fast camera
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frameworks for robot localization such as the commercial Vicon system
WhyCon by Krajnik et al. [25], these require a certain identification marker
that is defined by the system. For some robots, the defined markers are not
applicable, for instance, due to the robots geometry and size. Therefore, a
more adaptable generic alternative with regard to the deployment of such a

system would be beneficial for robotic labs.

This thesis presents a more flexible and camera-based robot localization sys-
tem, which builds upon deep convolutional neural networks (CNN). It is in-
spired by related work about pose estimation utilizing CNNs as discussed in

'https://wuw.vicon.com/
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1 Introduction

Section 2.4. The proposed framework is built on external cameras monitoring
the robot operation zone. It is able to track various robot types and differen-
tiate multiple instances of one robot type using trained identification markers.
The usage of a data-driven model-free approach allows an easy adaption of
the localization system to different robot types, identification properties, and
environments. Particularly, arbitrary identification markers such as colors,
numbers, letters, or LED patterns can be used to differentiate robots of the
same type. This may be necessary as some marker types are not usable in
certain scenarios (e.g. inappropriate lighting, occlusions, or the size of the
robot).

In contrast to previous work in the field of CNN pose estimation (see Sec-
tion 2.4), the proposed framework considers the entire process of robot local-
ization, explicitly including the setup phase of the system. As labeling training
data is tedious and time-consuming, we propose a straightforward training data
process including automation and augmentation steps (see Section 3.2).

A downside of CNNs is their high computational expense. Especially in
robotics, this can be a huge problem as robots often interact with highly dy-
namic environments. A slow localization framework would induce a delay into
the control loop, making it difficult to react fast enough to changes in the en-
vironment. We addressed this problem by optimizing our framework towards
a low latency using a multi-resolution pose estimation and lightweight CNNs
(see Section 3.1). The proposed localization system was evaluated on real-
world data with three different robot types and various identification markers.
Multiple configurations of the process and architecture were studied to provide
recommendations for its operation (see Chapter 4).

This thesis is structured a follows. Chapter 2 provides the state of the art for
neural networks, CNN object detection, CNN pose estimation, and training
data synthesization. In Chapter 3, the proposed CNN-based robot localiza-
tion framework including an efficient process for training data acquisition is
presented. Different settings of the training data generation pipeline and the
architecture are evaluated on real-world data in Chapter 4. Chapter 5 dis-
cusses the findings, provides resultant recommendations, and shows topics of
future work.

Parts of this thesis were published in the paper "A Robot Localization Frame-
work Using CNNs for Object Detection and Pose Estimation" [18]. All content
used here was independently written by the author of this thesis.




2 State of the Art

As the proposed robot localization framework is built upon convolutional neu-
ral networks (CNNs), this chapter gives a brief overview about neural networks
and convolutional neural networks in particular. Furthermore, it is shown how
state-of-the-art CNNs are used to solve the object detection task, where ob-
jects in an image have to be found and classified, and how these architectures
can be extended to additionally estimate the orientation of the found objects
(pose estimation). Finally, it is discussed how synthetic training data can be
generated for CNNs to reduce high-effort labeling.

2.1 Artificial Neural Networks in Computer
Vision

Neural networks have become the most popular state-of-the-art method for
many problems in computer vision. Since their first occurrence in 2012 within
the image classification challenge ImageNet [5], they improved the performance
of classification algorithms from about 75% accuracy in 2011 to roughly 95%
in 2015 [44]. Finally, they were even able to outperform humans on ImageNet.
Due to this breakthrough, neural networks were also applied to other tasks
such as image segmentation |1, 3, 29, 58| or object detection [12, 28, 38, 40].
These abilities make neural networks popular in a broad field of applications
in Biology, Chemistry, Geography, Robotics, Physics, and Medicine [4, 20].

Neural Networks are inspired by the human brain. They consist of multiple
layers of artificial neurons, as can be seen in Figure 2.1. These neurons are
connected by artificial synapses, which weight the output of neurons of the
previous layer (w; - z;) and transfer the information to the neurons of the next
layer [42]. These neurons collect the incoming information and react to it with
respect to an activation function f and a bias b, as can be seen in Figure 2.2.
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Figure 2.1: Conceptual architecture of a neural network. The input neu-
rons fetch the information from the image, it is processed through
weighted connections between the neurons of the hidden layers, and
the output layer predicts the category of the image. This figure is
obtained from [21].
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Figure 2.2: Mathematical model of a neuron. The incoming pulses z; are
weighted by synapses w;. The neuron sums up the weighted in-
puts and adds a bias b. The output of the neuron is defined by this
sum and an activation function f. This figure is obtained from [21].
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This forward propagation for a layer with n inputs and m outputs can be
described as a matrix multiplication, where x € R™ represents the activations
of the previous layer, W € R"™*" the weight matriz, b € R™ the biases of the
neurons, f the activation function, and y € R™ the output of the layer [14].

0 [ wii T+ by
=1 : (2.1)
_ym_ _Z:'Lzl wm,i * Xy + bm
_?/1 | _w171 T Win T by
=f : : S R B o I (2.2)
_ym_ _wm,l T W T bm
y=f(W-x+b) (2.3)

Typical activation functions for deep neural networks are, for example, the
ReLU function and the sigmoid function [14].

frew () = max(0, x) (2.4)
fsigm(x) = 1 _T_ez (25)

There are three different kinds of layers, as visualized in Figure 2.1. The input
layer fetches information from the image. For each color channel of each pixel,
there is an associated neuron. The brightness of it becomes the value of the
neuron. The output layer is responsible for representing the desired output.
For instance, in a classification neural network, it predicts the category of the
input image. The different classes are usually represented by the output neu-
rons using an one-hot encoding, where the neuron associated with the encoded
class has the value one and the others have the value zero. The hidden layers
between the input and the output layer process the information and learn to
detect features, which are helpful for making predictions [42|. If all neurons of
a layer are connected to each neuron of the previous layer, this layer is called
fully connected layer.

The knowledge of the neural network is stored in the weights of the synapses
and the bias values of the neurons, which are adjusted during the training
process |14].
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For each prediction, the information of the input image is processed due to the
current weights, biases, and the network architecture causing a specific output
of the network. This output is compared with the desired outcome (so called
ground truth) and an optimization algorithm adjusts the weights and biases
to enforce a correct prediction. This process is repeated with a lot of training
images multiple times causing the neural network to learn to solve the given
problem. One whole iteration with all available images is called epoch and
usually multiple epochs are necessary to train a network [16].

Mathematically, a loss is calculated for each training sample’s prediction and
ground truth using a problem-specific loss function. The gradient of the
loss with respect to the network weights is back-propagated [43] layer-wise
through the network. An optimizer (e.g. stochastic gradient descent [23],
RMSprop [52], or Adam [24]) uses the gradients to update the network weights
enforcing a more accurate prediction by minimizing the loss function [14]. The
learning rate controls how much the network weights are adjusted with respect
to the loss gradient. Usually several training samples (training steps) are cu-
mulated in a so called batch and are processed with the same fixed model
weights for performance reasons. After its completion, the network weights
are updated using the loss of all training samples in this batch.

Usually, the used dataset is split into two parts. On one part the neural network
is trained and on the other one the performance of the neural network is
evaluated. This is necessary to verify if the neural network is able to generalize
and transfer the knowledge, which it has learned on the training set, to new
data it does not know [14|. There are several common metrics to evaluate the
performance of a neural network on the validation dataset. For instance, the
precision, recall, and accuracy are often used for classification problems. They
are calculated using the number of true positives TP, false positives FP, true
negatives TN, and false negatives FN:

. TP
PT@CZSZOTL = m—w (26)
TP
= ———— 2.
Reca TPLFN (2.7)
TP+TN
A = 2.
Y = TP I TN+ FP+ FN (28)
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For regression tasks, a commonly used metric is the mean absolute error
(MAE). It is calculated for a series of predictions Y and their ground truth Y

] e—
MAE = = Y; - Y, 2.
DIl (2.9)

Overfitting is a common problem in machine learning. It is caused by a model
that is too closely adapted to the training dataset and, therefore, may fail
to fit additional data. If overfitting occurs, the training accuracy improves
but the validation accuracy drops as the neural network is learning features
that are specific to the training set. In some cases, the neural network has
enough parameters to memorizes the training images without learning the
general concepts to classify them. Therefore, overfitting often develops for
neural networks with many parameters and small training datasets [16].

There are several counter measurements. One obvious way is to use smaller
networks but it has been shown that especially deep neural networks with a
huge amount of training parameters achieve a higher performance than small
networks if trained properly [47].

The second possibility is using a larger training dataset. This usually signifi-
cantly improves the performance of neural networks [50]. Unfortunately, the
acquisition of large training datasets requires expensive manual labeling and is
very time-consuming. Therefore, the amount of training data is often extended
by a method called data augmentation, where random transformations such as
shift, scale, rotation, flipping, or distortion are applied to copies of the original
training images [26]. Another approach is synthetically generating annotated
training data, which is described in Section 2.5.

2.2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are currently the most popular archi-
tecture for image processing. They use convolutions as an image filter and
feature extractor. Thereto, a small matrix (the so-called kernel) is slid over
the image and is multiplied with the underlying pixels, producing a specific
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Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Figure 2.3: Architecture of a convolutional neural network (CNN). Convolu-
tions with different kernels generate a set of feature maps per layer.
The feature maps are subsampled to reduce the number of down-
stream operations. The last fully-connected layer is responsible for
the classification. This figure is obtained from [55]

feature map of the image. In CNNs, each convolutional layer has multiple ker-
nels and, therefore, generates several feature maps, as it is shown in Figure 2.3.
The CNN learns the weights of the kernel during the training [14].

Mathematically, the convolution of an image I € R? and a kernel K € R?
generating a feature map F € R? is defined as:

F(i,j) = (K« I)(i,j) =Y > I(i—m,j—n)-K(m,n) (2.10)

The same technique is used in classical computer vision to implement image
filters such as the edge detecting Sobel operator [6]. For the Sobel operator,
the filter kernels are manually designed to solve the desired task. In contrast
to that, CNNs learn filter kernels on their own and do not require manually
designed kernels.

A convolutional layer sums up the convolutions of each input channel
k € [0, cmn) of the input feature maps X € Ren*hinxwin and the correspond-
ing kernels of the learned weight tensor W € ReoutX¢inXhkernciXWrernel - where c,
h, and w denote the number of feature maps, their height, and their width.
This process is repeated for each output channel [ € [0, ¢,,) producing the
output feature maps Y € ReutXhourXwout of the convolutional layer. Addition-
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ally, a bias b € R is added to the output feature maps and an activation
function f is applied.

W(l, k) X(k)) (2.11)

Note the similarity to Equation 2.3 of a fully connected layer. Both variants
use learned weight matrices to describe the forward pass. However, instead of
connecting all neurons of subsequent layers with weighted synapses, in a con-
volutional layer the connections are spatially structured using the convolution
operation.

CNNs usually also contain pooling layers, which spatially subsample the feature
maps combining several neighboring pixels (see Figure 2.3). For instance, the
commonly used max pooling [60] calculates the maximum for input patches of
size N x N sampled with a stride of S for each feature map independently:

Y(k.i j) = X(ki-S S 2.12
(k,i,7) pehax L max (kyi-S+m,j-S+n) (2.12)

Note that ¢ and j are zero-based numbered. Typically, N = 2 and S = 2 are
chosen. In that way, the pooling operation reduces the number of pixels, which
have to be processed by higher convolutional layers, decreasing the computa-
tional complexity. Even though in this way the exact position of the feature is
lost, its existence is still known, which is sufficient for classification tasks [14].

Usually, the number of feature maps increases for deeper layers to grasp more
concepts. On top of the convolutional layers, there is often another fully con-
nected network for the classification task (see Figure 2.3) [14].

A commonly used CNN architecture following the general structure of Fig-
ure 2.3 is VGG-16 [47]. It has 16 convolutional layers (kernel size 3x3) starting
with 64 feature maps per layer and increasing up to 512 feature maps fol-
lowed by 3 fully connected layers with 4096, 4096, and 1000 neurons. This
architecture results in 138 million trainable weights. In more recent archi-
tectures, the number of trainable parameters has been reduced for the sake
of convergence and inference speed. For instance, MobileNet [17], which was
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optimized for fast inference speed, only has 4.2 million parameters. This was
achieved by omitting fully connected layers and utilizing depthwise separable
convolutions [46].

It has been shown that the convolutional layers learn hierarchical informa-
tion [59]. For instance, if a CNN is trained to recognize faces, the first layers
learns to recognize simple features such as edges. They can be used by higher
layers to recognize more complex shapes such as eyes, mouths, and in the
highest layers even faces.

Due to the large number of trainable parameters, deep convolutional neural
networks require a vast amount of training data to generalize properly [47].
As there is not enough labeled data available for most problems, a technique
called transfer learning is often used. The neural network is pre-trained on a
generic dataset such as ImageNet [5]. This makes sure that a sufficient amount
of training data is available to train the feature detectors properly. Most of the
learned knowledge like the edge and shape detection of the lower layers can be
easily transferred to a new problem [34]. Therefore, only the last layers have to
be trained. This drastically reduces the amount of training parameters, which
makes it possible to train the neural network with a small amount of training
data in less time [33].

2.3 CNN Object Detection

For object detection, an image usually contains multiple objects with poten-
tially different classes. Object detection algorithms try to predict the bounding
box and the class of each object. In recent years, neural networks have also
become the state-of-the-art method for this task. One of the first successful
CNN object detectors was R-CNN [12]. It utilizes an external box proposal al-
gorithm to crop the input image and classify each crop using a neural network.
However, this method is quite expensive as features have to be computed mul-
tiple times. To circumvent this problem, Faster R-CNN [40] reuses already
computed features. It consists of three modules, as can be seen in Figure 2.4a.
The region proposal network uses the intermediate layer of a feature extractor
(e.g. VGG-16 [47]) to predict class-agnostic box proposals. The box classi-
fier uses these box proposals to crop features from the intermediate layer and
applies the remainder of the feature extractor to predict the class and a box

10
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(a) Faster R-CNN.
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Figure 2.4: Comparison of two different CNN object detection architectures.
Both use a feature extractor (e.g. VGG-16) to obtain features from
an intermediate layer. While Faster R-CNN uses a proposal gener-
ator to produce class-agnostic object proposals that are classified
by a box classifier, SSD performs both steps in a single detection
network. This figure is adapted from [19].
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2.4 CNN Pose Estimation

refinement for each proposal. This approach significantly reduces the compu-
tation time [19]. To reduce the runtime even further, there are several neural
networks that use a single feed-forward convolutional neural network such as
Single Shot Multibox Detector (SSD) [28] or You only look once (YOLO) [38|.
Both predict the class as well as the bounding box coordinates directly with-
out requiring an upstream region proposal network (see Figure 2.4b). To deal
with differently sized objects, Single Shot Multibox Detector also utilizes the
output of intermediate feature maps with higher resolutions.

A common metric to evaluate the performance of an object detection algorithm
is the mean average precision (mAP) for a certain minimum intersection over
union (IoU) [8]. Using the IoU, predicted object bounding boxes are matched
with ground truth bounding boxes allowing a classification into true/false pos-
itives. To be considered as correct prediction, the overlap of a prediction
bounding box Bp with a ground truth bounding box Bgr of the same class
must exceed a certain value (e.g. 0.5), where the overlap is defined as IoU:

area(Bp N Ber)
area(Bp U Bgr)

IoU = (2.13)

The average precision (AP) is calculated for the precision-recall-curve as mean
precision of a set of equally spaced recall levels. Afterwards, the APs for all
classes are averaged resulting in the mAP.

2.4 CNN Pose Estimation

For robot localization, the position as well as the orientation of an object is
required. The combination of both is called pose. In the last few years, several
approaches for pose estimation, utilizing CNNs, were proposed. Most of them
are based on previous work about object detection. While Kehl et al. [22], Poir-
son et al. [37], and Tekin et al. [51] utilize a single shot architecture as outlined
in [28], the approaches described by Massa et al. [30], Ofioro-Rubio et al. [32],
and Su et al. [49] are built upon R-CNN [12] and its successors Fast R-CNN [11]
and Faster R-CNN [40].

Besides the underlying object detection system, these approaches can be di-
vided into the separate and the simultaneous approach, which differ in the

12
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integration of the orientation estimation step into the object detection frame-
work. Glasner et al. [13], Tulsiani and Malik [54], Tulsiani et al. [53], Redondo-
Cabrera and Lopez-Sastre [39], and Poirson et al. [37] execute the orientation
estimation separately after the object detection is done, while Pepik et al. [36],
Xiang et al. [56], Massa et al. [30], and Xiang et al. [57] integrate the pose es-
timation directly into the object detection network. Both concepts were com-
pared by Onoro-Rubio et al. [32] in a unified framework, who found out that
the separated detection and orientation estimation achieves a better perfor-
mance. Additionally, some more specific aspects were researched in literature.
For instance, Su et al. [49] showed that training only on synthetic data achieves
comparable results to systems trained on real-world data.

Finally, these approaches can be grouped by the dimension of the estimated
pose, which is determined by the dimension of the position and orientation.
While [13, 30, 32, 37, 49| study 3D pose estimation (2D position and 1D
orientation), [22, 51| estimate 6D poses (3D position and 3D orientation).

2.5 Training Data Synthesization

A large amount of annotated data is crucial for training deep neural net-
works [50]. Unfortunately, the data acquisition is a huge effort making it dif-
ficult to train deep CNNs for custom applications. To overcome this problem,
training data can be synthetically generated for various problems in computer
vision.

One approach is photorealistically rendering the required data as it was done
by Handa et al. [15], Movshovitz et al. [31], Peng et al. [35], Richter et al. [41],
and Su et al. [49] for semantic segmentation [15, 41|, object detection [35],
and pose estimation [31, 49]. 3D models of the relevant objects are rendered
with different projections and orientations either on randomly sampled back-
ground images [31, 35, 49] or directly into entire 3D scenes [15, 41]. In that
way, the ground truth for object detection and orientation estimation can be
easily obtained from the placement algorithm and does not have to be labeled
manually. However, it can be tedious to create realistic scenes and the image
statistics may differ between rendered and real data, making generalization
difficult [35].

13



2.5 Training Data Synthesization

Another approach is compositing real images by pasting image object crops
into background images as described by Dwibedi et al. [7]. Georgakis et al. [10]
additionally considers the scene geometry for context-sensitive placement. By
using real images as source material for the composition algorithm, the image
statistics may be more similar to entirely real data [7].

14



3 Proposed Localization
Framework

In this chapter, the proposed robot localization framework is presented. First,
the two-stage identification and pose estimation approach is introduced and
discussed. Second, the process of acquiring training data for the system setup,
which is based on superimposing background images with robot crops, is de-
scribed. And third, the usage of the framework is summarized.

This chapter is based on the paper "A Robot Localization Framework Using
CNNs for Object Detection and Pose Estimation" [18]. The taken passages
were independently written by the author of this thesis.

3.1 Architecture

The proposed robot localization framework is based on fixed RGB cameras
looking at the robot operation zone. On the recorded camera frames, we per-
form a two-stage image processing, consisting of an object detection localizing
the robots within the scene (first stage) and an instance classification as well
as an orientation estimation (second stage), as shown in Figure 3.1.

The first stage performs a low-resolution robot detection. It samples down
the camera image and uses a CNN object detection to classify the type (e.g.
quadcopter or wheeled robot) and to estimate the bounding box of a robot.
The results of the first stage are used to feed the second stage. The original,
high-resolution camera image is cropped according to the estimated bound-
ing boxes. Depending on the predicted robot type, a corresponding second
stage neural network is selected. For each robot type, there are a single in-
stance identification and orientation estimation CNN. In the end, the output
of both stages is merged resulting in a bounding box, the type, the instance
identification, and the orientation of each robot.

15



3.1 Architecture

Second Stage

) 4

First Stage | Identification CNN

Object Detection

Bounding Box |
—l
Robot Type [T,

Orientation CNN Orientation

Figure 3.1: Architecture of the robot localization framework consisting of two
stages. The first stage samples down the camera frame and looks
for robots. The detection results are processed by the second stage.
For each robot, the original high-resolution frame is cropped ac-
cording to the bounding box and fed into a robot type specific
identification and an orientation estimation CNN.

The orientation estimation neural network supports, both, continuous and
discrete estimation. To provide a continuous orientation, a linear output acti-
vation function for regression and the mean squared error of the smallest angle
difference as loss function are used. For the discrete approach, the orientation
angles are separated into 360 bins resulting in a classification problem. The
performance of both approaches is compared in Section 4.

As the cameras are fixed, their position relative to the ground plane can be
determined. For robots moving on the floor, this information is sufficient to
calculate the 3D position and the projected 1D orientation. For flying robots
such as quadcopter, their height can be provided by an on-board sensor. In the
experiments, only one camera is used but multiple cameras can be supported
by merging the output of the framework after localization.

We have decided to use the two-stage approach as it provides several advan-
tages over an integrated one-stage approach. Normally, robots represent only
a small part of the camera frame. Therefore, most of the pixels do not contain
relevant information. As comparably low-resolution features are sufficient to
recognize the robot itself, the first stage robot detection provides a fast way
to find significant image sections. This information can be utilized to pro-
vide high-resolution image crops for identification and orientation estimation
of a detected robot, which depend on smaller features than the detection of
the whole robot. The speed increase due to the first stage screening justifies
the recalculation of convolutional layers with a higher resolution in the second
stage. Moreover, this approach allows that the neural networks of first and sec-
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3.1 Architecture

First Stage Second Stage

;/’
34’3

s s

’

Type: quadcopter ID: orange - orange

Figure 3.2: Example two stage pose estimation. The first stage detects the
quadcopter in the downsampled image and the second stage deter-
mines its ID as well as its orientation in a high-resolution robot
crop.

ond stage can be developed and optimized independently. Furthermore, due to
the separation of identification and orientation estimation for each robot type,
the CNNs are more specialized and can be chosen with less capacity as they
handle less features and classes. As result of the reduced number of feature
calculations, they have a lower runtime.

To provide a fast inference speed, we use state-of-the-art lightweight CNNs.
For the first stage, a SSD [28] object detection architecture (see Section 2.3)
with MobileNet v2 [45] as feature extractor is used. This decision is based
on the comparison of different object detection meta-architectures and their
feature extractors in [19]. The chosen architecture/model is the fastest config-
uration in the Pareto-front. For the second stage, a MobileNet is used for the
same reasons. Moreover, the width of MobileNet can be easily adjusted by one
parameter, allowing speed /performance adjustments [17]. We have used the
TensorFlow Object Detection API' for the implementation of the first stage
and Keras? to realize the second stage as they provide implementations of the
used network architectures and pre-trained network weights. Problem-specific
adaptations of the framework as well as the used hyper-parameters for training
are discussed in Section 4.3.

'https://github.com/tensorflow/models/tree/master/research/object_
detection
’https://keras.io
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3.2 Training Data Acquisition Process

3.2 Training Data Acquisition Process

A crucial contribution to the performance of a neural network is the amount
and quality of its training data [50]. Usually, labeling enough images to train
a CNN requires a lot of effort, which is not reasonable for setting up a robot
localization framework. To avoid this problem, we synthesize training data
by superimposing image crops, containing robots, on background images. The
necessary robot crops are extracted from images of robots in the working area,
which were recorded with the localization camera during a setup phase.

3.2.1 Compositor

The compositor is an algorithm that superimposes robot crops on background
images with random scale, rotation, and position. It is similar to the approach
described in |7] but it uses a model-driven crop algorithm (see Section 3.2.2)
instead of a trained semantic segmentation. The compositor can generate a
large amount of data with multiple robots in one frame and arbitrary robot

Background Images Superimposed Images

: { Random Selection )\ ” =

/QQ

K,

\

( Random Placement
A

( Random Rotation
A

( Random Scale
A

‘( Random Selection

Robot Crops

—

Figure 3.3: Compositor flowchart. The compositor randomly selects back-
ground images and robot crops to superimpose them. Random
transformations (scale, rotation, and translation) are applied to
the crops according to the properties of the respective robot type.

18



3.2 Training Data Acquisition Process

position, orientation, size, and occlusion (see Figure 3.3). Its main advantage
is the known ground truth information of the synthesized data, which saves a
huge amount of time for labeling the images.

There are other methods to synthesize data such as rendering training images
(see Section 2.5). But they have the disadvantage that it is quite difficult to
find parameters to match the lighting in the robot working zone and the camera
properties. Moreover, they require 3D models of all robots and material models
for photo-realistic rendering. Therefore, it is less effort to use real images of
robots and to crop them.

Even though the amount of generated data is theoretically unlimited, the di-
versity of the synthesized data is restricted by the provided backgrounds and
robot crops. Moreover, the robot crop does not necessarily match with the
background as in a real image. This can affect lighting, blur/blending, and
crop/compositing artifacts as well as contextual information, which could in-
fluence the performance of the CNNs [10]. For example, an occluded robot
could be detected by its shadow that isn’t generated by the compositor. How-
ever, these are only minor problems that are worthwhile to minimize the effort
of labeling real images.

In order to minimize the bias induced by the class imbalance of the training
data [2], the compositor balances all important factors for the experiments
such as background types, robot types, and identification patterns within one
robot type. For each generated frame, a random background is chosen on
which one to four randomly selected robot crops are composited with random
scale, orientation, and translation. The bounds of the robot size depend on
possible distances of the robot to the camera. For each robot in a frame its
type, identification, bounding box, and orientation are stored as ground truth
for the training.

3.2.2 Robot Crops

Robot crops are the essential factor for the quality and the necessary setup
effort generating the final composited data. To extract them, a manual or an
automatic approach may be used.

For the manual robot crop (see Figure 3.4), an image sequence of a non-
moving robot with a static or a changing identification pattern (e.g. realized
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3.2 Training Data Acquisition Process

Figure 3.4: For the manual crop a binary mask (middle) is manually created

for each image sequence. It is applied to every frame of the image
sequence of the stationary robot (left), generating multiple robot
crops (right) with a single mask.

Figure 3.5: For the automatic crop an image of the background without robot
(left) is recorded. It is used in a background subtraction algorithm
to extract the robot crops (right) from the image sequence with
robot (middle). Note that the automatic crop still contains some
background due to the shadow of the robot on the ground.

with LEDs) is captured. For each image sequence, one single instance mask is
manually created using an image editing tool. Later, this mask is applied to
all images of the sequence.

The automatic robot crop (see Figure 3.5) is based on background subtrac-
tion. First, an image of the background without robot is captured. After
that, the robot is placed in the scene and an image sequence is recorded. Fi-
nally, the background image is subtracted from the image sequence followed
by thresholding and morphological operations to generate an instance mask
for each frame. Although, using the automatic method, robots could even
move during the image sequence, only non-moving robots were captured due
to comparability between both techniques.
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3.3 Framework Usage Overview

To properly superimpose the robot crops on arbitrary backgrounds, the crop
itself should not contain any background of the operation zone. Therefore, in
both methods, the generated masks are used as alpha channel for each image
in the sequence with the robot. The image is cropped using the bounding box
of the outer contour of the robot mask. It has to be ensured that the robot
crops are aligned in the same direction. This can either be done before the
recording or by rotating the crops later. We recommend aligning the robot in
scene as it saves some time.

In the end, the crops are grouped according to robot type and identification
pattern. For static patterns such as printed letters, frame colors and so on, the
image sequence should be labeled accordingly during the recording process. If
the identification pattern is changing during the image sequence (e.g. a se-
quence of LED identification patterns), the identification of the first frame is
determined manually and an algorithm, which detects changes of the identifi-
cation pattern, labels the rest of the frames according to a predefined sequence
of identifications (e.g. black, red, and blue).

3.3 Framework Usage Overview

The proposed robot localization framework can easily be applied to a custom
scenario. First, the compositor data has to be acquired. The necessary back-
ground images can be obtained from a generic dataset such as MS COCO |[27]
or from recordings of the operation zone without robot. Depending on the
user’s preference, automatic or manual crops can be used. For automatic
crops, an image of the operation zone without robot and an image sequence
with robot (arbitrary location but defined orientation) are captured. For man-
ual crops, an image sequence of a non-moving robot (arbitrary location but
defined orientation) is recorded and one mask for the entire sequence is created
using image editing software. Independently of the crop method, the sequences
are labeled with robot type and identification pattern and the respective crop
algorithm is run.

Second, the compositor is executed with the preferred settings for the first
and the second stage (recommendations based on our evaluation are listed in
Table 4.4). After that, both stages are trained on the generated compositor
data. Finally, the trained CNNs are deployed in the framework pipeline (see
Figure 3.1).
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4 Ewvaluation

In this chapter, the evaluation of the proposed robot localization framework is
discussed. First, the robot types and identification patterns used for evaluation
are presented. Second, the generation of the training data and the acquisition
of the validation data are described. After that, the training setup for the
experiments is explained. And finally, the results for the first stage, the second
stage, and a combined setup are analyzed.

This chapter is based on the paper "A Robot Localization Framework Using
CNNs for Object Detection and Pose Estimation" [18|. The taken passages
were independently written by the author of this thesis.

4.1 Evaluation Environment

We used three different robot types in our experiments: quadcopters, Spheros?,
and a Kuka YouBot? (see Figure 4.1). The quadcopters have 4 position LEDs
(green and red) next to their rotors as well as four RGB identification LEDs in
the center. The Spheros are spherical robots driven by a weight moving inside
their transparent hull. They provide one blue position LED at the rear and
one RGB identification LED in the center. The YouBot is a wheeled robot
with a manipulation arm in the front. The robot operation zone was recorded
by a Basler acA1600-60gc standard industry camera, which was mounted on
the ceiling.

As identification properties for our experiments, we used 15 different LED
patterns as well as three letters (A, B, and C) for the quadcopter, eight different
LED colors for the Sphero, and three letters for the YouBot. The identification

'https://www.sphero.com/sprk-plus
Zhttp://www.youbot-store.com/
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4.1 Evaluation Environment

Figure 4.1: Examples of each robot type with different identification patterns.
From left to right: quadcopter (marker B and LED pattern blue-
green), Sphero (LED black and LED bright red), and YouBot
(maker A and marker C). Notice that the blue LED at the Spheros
marks their rear, that the marker is attached at different positions
at the YouBot, and that the green position LED outshines a blue
identification LED of the bottom quadcopter.

markers of the YouBot were attached either in the center or on top of a pole
at the back. Some example patterns are shown in Figure 4.1.

We have chosen these robot types and identification patterns as they provide
versatile challenges for the localization framework and, therefore, indicate that
it can be applied to a high variety of robots. The Spheros are quite small (about
25x25 pixels in the camera image) and do not offer the possibility to attach
an identification marker due to their shape and locomotion. The quadcopters
have a medium but varying size (depending on their altitude) and provide
many identification patterns, which are in some cases difficult to distinguish
due to overexposure, reflections, spatial separation of the single LED color
channels, blending with the position LEDs, and occlusion (see Figure 4.1).
Finally, the YouBot provides an example for a bigger robot (about 200x120
pixels) with many visual features.
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4.2 Training and Evaluation Dataset

For the training process, we have captured robot crops under different light-
ing conditions (artificial lighting and natural lighting), different locations of
the robot in the operation zone (each corner and in the middle), and different
floor colors (quadcopter yellow, Sphero yellow and green, YouBot green). For
the compositor, 1524 images of the operation zone and 25,608 randomly sam-
pled images from the 2017 training dataset of MS COCO [27]| were used as
backgrounds (see Figure 4.2 for examples). Which source material should be
used for the compositor and how many training images should be generated,
is analyzed in the experiments (see Section 4.4).

Depending on the stage of the framework, the training images are further
processed. The first stage exploits random horizontal and vertical flips and
SSD random crop [28] to augment the dataset. The data for the second stage
is cropped using the ground truth boxes with a variance from -10% (inwards)
to +15% (outwards) and prepared according to the second stage pipeline (see
Section 3.1).

The evaluation dataset for the first stage consists of 1400 images per robot
type. The second stage evaluation set contains 110 images per identification
pattern of each robot. Both datasets consist of real-world images and they
contain the same amount of frames with natural/artificial lighting, floor colors
(Sphero) and pattern position (YouBot) for each robot type. The images of
the evaluation set were semi-automatically labeled and manually corrected.

As the normal use case contains few objects in the robot working zone, ad-
ditional objects were added to mislead the first stage and evaluate its speci-
ficity. We have chosen to use synthetic objects, which were extracted from the
eval2017 dataset of MS COCO [27], as they provide a good variety of decoy
objects. Three randomly chosen decoys were superimposed at a random posi-
tion and rotation on each validation image while it was ensured that they do
not occlude the robots.

4.3 Experiment Setup

We have chosen the experiments, presented in this section, to provide recom-
mendations for a good configuration of the localization framework. Therefore,
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4.3 Experiment Setup

(a) Background Images (b) Robot Crops

(¢) Superimposed Images

Figure 4.2: Example backgrounds, robot crops, and generated images for train-
ing. (a) The necessary background images for the compositor were
obtained from scenario-specific recordings (top) and a generic im-
age dataset (bottom). (b) A selection of manual robot crops with
different robot types, identification patterns, and lighting condi-
tions is shown. (c) The training data is generated by superimposing
background images with robot crops.
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4.3 Experiment Setup

Table 4.1: Default experiment configuration for first and second stage

H First Stage ‘ Second Stage ‘
Batch size 16 32
Optimizer RMSprop [52] Adam [24]
Learning rate 0.004/0.0004 (after 15k steps) 0.0004
Input size 400x300 128x128
Training data bk images 2k crops per id
Experiment repetitions 5 8
Evaluation period step 20k - 25k epoch 15 - 25

we have evaluated the main parameters of the compositor as well as impor-
tant hyper-parameters of the two framework stages. For both stages, a de-
fault /reference configuration was chosen as base level. It is annotated with
F/S 0. In all experiment abbreviations, F means first stage and S stands for
the second stage. Table 4.1 lists all important default settings and Table 4.2
illustrates which parameters were changed in each experiment configuration.
The optimizer and the learning rate (see Section 2.1) were both determined in
preliminary experiments. The batch size, which specifies the number of steps
used for a weight update, was chosen in order to optimize training speed. The
experiments were repeated several times (see Table 4.1 row experiment rep-
etitions) using different random seeds for training data shuffling and weight
initialization to analyze the frameworks robustness with respect to these fac-
tors. After the network had converged, a certain number of steps was used for
evaluation (see Table 4.1 row evaluation period).

The first three experiment configurations (F/S 1 — F/S 3) analyzed the behav-
ior of both stages with respect to the compositor settings.

e In F/S 1, the influence of the background diversity of the generated
images was researched. Therefore, training data generated with back-
grounds only of the robot working zone (SwarmLab), only of MS COCO,
and of both combined was studied. We wanted to figure out whether a
background set with higher diversity (MS COCO) can improve the learn-
ing process and if the framework has to be trained with scenario-specific
backgrounds.
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4.3 Experiment Setup

e ['/S 2 examined the effect of the amount of composited images to analyze
the number of useful images when their impact on the performance is
limited by the diversity of crops and backgrounds.

e In the third experiment (F/S 3), the influence of the crop method was
surveyed determining whether a more precise mask generated by man-
ual labeling justifies its additional labeling cost or if the more versatile
automatic crops can even improve the performance of the framework.

The subsequent experiments were conducted to analyze hyper-parameters of
the framework architecture.

e In F 4, the input resolution of the first stage was studied to find a good
speed-accuracy trade-off.

e For the same reason, in S 4, the influence of the MobileNet width mul-
tiplier v [17] of the second stage was researched.

e Finally, S 5 evaluated the performance of continuous and discrete pose
estimation.

For the first stage, SSD with MobileNet v2, which was pre-trained on
MS COCO from [19], was used. To adapt the pre-trained network to our
problem, the number of neurons of the classification output layer was adjusted
to match the number of robot types and the entire network was fine-tuned
with a low learning rate. The chosen hyper-parameters for the training can
be seen in Table 4.1. After 20,000 training steps (one batch iteration), the
network wasn’t improving anymore. The evaluation data for the experiments
was extracted from step 20,000 to step 25,000 every 250 steps.

The second stage is based on network weights that were pre-trained on Ima-
geNet provided by Keras. As the network wasn’t improving after 15 dataset it-
erations (epochs), the evaluation was based on epoch 15 to 25. The MobileNet
input size is 128 because bigger robot crops do not provide more necessary
details as the robots itself are usually smaller than 200x200 pixels.

The first stage detection performance was evaluated with Pascal VOC 2010
mAP@Q.5I0U [8] (see Section 2.3) and for the second stage the classification
accuracy as well as the mean absolute error of the smallest angle difference
were used.
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4.3 Experiment Setup

Table 4.2: Experiment overview

’ Experiment H Description
F/S 0 SwarmLab and COCO compositor backgrounds
F/S 1.1 only SwarmLab compositor backgrounds
F/S 1.2 only COCO compositor backgrounds
F/S 2.1 1/5 of the default image amount
FO default image amount (see Table 4.1)
F/S 2.2 4 times of the default image amount
F/S 0 manual crop
F/S 3.1 automatic crop
F/S 3.2 automatic and manual crop
F 4.1 first stage resolution of 200x150 pixels
FO first stage resolution of 400x300 pixels
F 4.2 first stage resolution of 800x600 pixels
S4.1 MobileNet width multiplier o = 0.25
SO0 MobileNet width multiplier o = 0.5
S 4.2 MobileNet width multiplier o = 0.75
S 4.3 MobileNet width multiplier o = 1.0
S0 discrete orientation estimation (classification)
S5 continuous orientation estimation (regression)
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4.4 Results

4.4.1 First Stage

In this section, the performance of the first stage is evaluated. With the best
configuration, it reaches a median mAP@0.5I0U of 99.8% (copter) / 79.5%
(Sphero) / 99.4% (YouBot). Compared to the other robot types, the detection
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Figure 4.3: Performance comparison of the first stage.
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rate of the Sphero is quite low. This has several reasons. First of all, the
Spheros are considerably smaller, which means that more precise bounding
boxes in relation to the image size are necessary to achieve an intersection
over union of at least 50%. Moreover, the Spheros have only few features and,
in addition, there are some objects containing similar features such as LEDs,
light bulbs, or light reflections. So it is a quite challenging task to detect the
Spheros among other objects.

In the experiments, the first stage performance with respect to different config-
urations was compared, as can be seen in Figure 4.3. One important factor is
the background set for the compositor. It was figured out that only MS COCO
backgrounds (F1.2) work better (lower median and less variance) than only
SwarmLab backgrounds (F1.1) as the SwarmLab backgrounds do not contain
other decoys while COCO contains a variety of different objects resulting in a
better generalization. Another important factor is the number of composited
images (F2.1 / FO / F2.2). Generally, the performance of the first stage was
increased by using more images, as it is also suggested in [50].

As crop method, manual cropping (F0) was figured out to achieve a lower
median and variance in comparison to automatic crop (F3.1) and both (F3.2).
Nevertheless, the difference is tolerable and, therefore, it may be reasonable to
use automatic crops to speed up the setup of the framework.

In the last experiment for the first stage, different input resolutions were com-
pared. The presumption that larger robots need less resolution for detection
was confirmed. Even with 200x150 pixels (F4.1), the YouBot achieved good
results while 400x300 pixels (F0O) provided the best mAP@0.5I0U for copters.
Small robots such as the Sphero need a high resolution of 800x600 pixels (F4.2)
to provide the best performance as more small features can be exploited by the
CNN. However, the input resolution substantially affects the inference speed of
the first stage, as can be seen in Table 4.3. Therefore, we have chosen 400x300
pixels as default configuration to provide the best speed/accuracy trade-off for

Table 4.3: Benchmark of the first stage

First stage resolution | 200x150 | 400x300 | 800x600
Runtime on Xeon E3-1230 v3 (ms) 27.36 76.35 322.11
Runtime on GTX 1080 (ms) 10.27 12.26 22.89
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4.4 Results

the first stage. In that case, the first stage takes 12 ms on a Nvidia GeForce
GTX 1080 or 76 ms on an Intel Xeon E3-1230 v3 @ 3.30GHz.

All in all, we recommend to generate about 20,000 images (depending on sce-
nario, number of crops, and backgrounds), use a diverse background set (no
specific backgrounds of robot working zone are necessary), and an input reso-
lution of 400x300 pixels for the first stage.

4.4.2 Second Stage

The second stage achieves good results for its instance identification and ori-
entation estimation. With the best configuration, it reaches a median instance
identification accuracy of 98.9% (copter) / 96.4% (Sphero) / 98.8% (YouBot)
and a mean absolute orientation error of 1.6° (copter) / 11.2° (Sphero) / 2.3°
(YouBot).

The comparably low instance identification and orientation estimation results
of the Sphero are probably caused by its locomotion as the LED board is some-
times lopsided and the identification LED is not properly visible. The same
is true for the position LED, which complicates the orientation estimation.
Moreover, the position LED is in some cases outshone by a bright identifica-
tion LED color.

In the experiments, it was found out that a higher amount of composited
images (S2.1 / SO / S2.2) significantly improves the instance identification
accuracy and the orientation estimation for all robot types, as shown in Fig-
ure 4.4. The number of images is the most important factor influencing the
performance of the framework decreasing both the median and the variance of
the error. It should be noted that even the lowest amount of generated images
exceeds the number of crops by far.

The second most important factor is the network size researched in S4.1 / SO /
S4.2 / S4.3. A network with more feature maps improves the instance identi-
fication performance especially for the YouBot a lot while it has less influence
on Spheros (see Figure 4.4a - 4.4c). This could be caused by the amount of
visual features of the different robot types. There are more features necessary
to classify the letter markers of the YouBot than the single RGB identification
LED of the Sphero. Therefore, more features must be learned by the neural
network, which requires a broader architecture with more feature maps. For
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Figure 4.4: Performance comparison of the second stage for identification and

orientation estimation with respect to Table 4.2.
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Table 4.4: Recommended configurations for the framework

H First stage Second stage
Composited images || 20k per type 8k per ID
Backgrounds MS COCO MS COCO + SwarmLab
Crop method user preference user preference
Input resolution depending on robot size | —
Network width — depending on problem
complexity

orientation estimation, a bigger network for Spheros even deteriorates the per-
formance (see Figure 4.4e), probably as there are less features necessary for
the orientation estimation and larger networks tend to overfit the problem.

The influence of the background and the crop method are less substantial.
Using all available backgrounds (SO vs S1.1 and S1.2) improves the instance
identification performance slightly (see Figure 4.4a - 4.4c) as it adds variance to
the training dataset. For identification purpose, only manual crops (SO vs S3.1
and S3.2) work slightly better. In experiment S5, continuous and discrete pose
estimation were compared. It was found out that regression works significantly
worse. This tendency is also described in [32|, especially, when the amount of
training images is not large enough.
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Figure 4.5: Runtime analysis of the second stage for different MobileNet width
multipliers @ and number of robots (100 runs; standard deviation
about 45% on CPU and 24% on GPU).
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The inference time of the second stage is mainly affected by the width multi-
plier o and the number of robots detected by the first stage (see Figure 4.5).
For the default configuration (v = 0.5) and an amount of 10 robots within
the field of view of the camera, the second stage consumes 6 ms on a Nvidia
GeForce GTX 1080. So both stages spend about 20 ms for one camera frame
allowing a frame rate of 50 Hz, which is similar to [37].

To put it in a nutshell, we recommend the following settings to achieve a
good second stage performance. Generating more images can increase the
performance a lot. The network size should be adapted to the task complexity
providing enough feature maps to tackle the problem but not too much to
prevent overfitting. If possible, multiple background sources should be used.
The crop method does not influence the performance significantly and can
be chosen according to the own preference towards setup effort and system
performance. An overview of the recommended settings for both stages is
shown in Table 4.4.

4.4.3 Total Performance

Finally, we have chosen the best performing configurations of the experiments
of both stages (see Section 4.4.1 and 4.4.2) for an integrated performance eval-
uation of the framework. For the first stage, the setting of F1.2 (trained only
on COCO backgrounds) and, for the second stage, the setting of F2.2 (8,000
training images per identification) were deployed. The framework was eval-
uated on complete video streams of the camera under application conditions
with 10 Hz frame rate. Even though the evaluation was done offline on a
recorded video, the image characteristics of the video are similar to the cam-
era stream itself, so that the results of this evaluation can be transferred to a
live system.

In Table 4.5, the mAP@0.5I0U for the robot type and instance detection of the
whole framework as well as the mean absolute error (MAE) of the orientation

Table 4.5: Performance of the whole framework
H Copter ‘ Sphero ‘ YouBot ‘

mAP@Q.5I0U 97.9% | 70.0% | 96.6%
Orientation MAE 1.6° 11.9° 2.6°
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4.4 Results
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Figure 4.6: Distribution of successive wrong robot type/instance detections.

for correctly detected robots are shown. The good results of both stages are
maintained in the framework. Depending on robot type, it achieves 70% - 98%
detection mAP@Q0.5I0U and 2° - 12° orientation error.

Moreover, the number of successive wrong detections/classifications in a row
was evaluated. The results are illustrated in Figure 4.6. It can be seen that
the framework misses the correct classification of a robot only a few frames in
a row (usually less than five), which can easily be post-processed e.g. by an
Extended Kalman Filter [48] to improve the performance even further.
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5 Conclusions

In this thesis, an adaptive localization and identification framework for swarm
robots is presented. It is based on cameras placed in the operation zone of the
robots. Its key features can be summarized as follows:

e Due to the utilization of deep convolutional neural networks, the frame-
work is able to handle arbitrary robot types as well as identification
markers.

e A video stream with and without robot (known type, ID, and defined ori-
entation) is sufficient for the proposed training data generation process,
allowing a straightforward system setup.

e By using a multi-resolution approach as well as lightweight CNNs, the
framework consumes only 20 ms processing time on a GPU, enabling
control tasks.

We have evaluated the framework on real-world data of three robot types and
various identification markers to show its adaptability. Overall, the perfor-
mance of the system is very good and provides robot pose tracking accuracy
for a minimum intersection over union of 0.5 with less than 4% of identification
error and an orientation error lower than 3° for two of three robot types. The
higher error of the third robot type is caused by its physical properties and is
not induced by the system itself.

During the analysis the properties of the training data generation process and
the localization framework, we have found out that the amount of generated
images is an essential factor for the system’s performance, especially for the
second stage, even though it highly outnumbers the number of robot crops.
Furthermore, a generic background dataset is sufficient for training the local-
ization framework. Scenario-specific backgrounds do not have to be recorded,
simplifying the system setup. The manual crop slightly outperforms the au-
tomatic crop. However, the performance difference is relatively small, so the
user may justifiably choose automatic crop for a lower setup effort.
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5 Conclusions

In future work, the localization framework can be generalized to use multi-
ple cameras extending the possible robot operation area as well as avoiding
occlusions. Moreover, the compositor can be extended to make it aware of
perspective and consequently allowing more flexible camera positioning. In
this context, the framework could be extended to visually estimate the dis-
tance of the robots to the camera without additional sensor input. Further,
we aim to improve the automatic crop to reach the performance of the manual
crop as well as to analyze a single stage pose estimation architecture and other

CNNs.
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