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Abstract—This paper presents the Navigation Wind PSO (NW-
PSO) as a search mechanism for aerial micro-robots with limited
battery capacity acting in environments with unknown external
dynamics (such as wind). The proposed method uses the concepts
of multi-criteria decision making and let the individuals to decide
on their movements almost following the flow with small course
deviations in order to save as much energy as possible. One of
the goals is to investigate how the arising premature energy-
loss on individual level affects the performance of collective
search. The experiments show that NW-PSO can save a good
amount of energy as well as perform search behavior with good
approximation of the global optimal solution almost without
awareness regarding disturbance factors and particle loss.

I. INTRODUCTION

Recently there has been a surge of interest in aerial swarm
systems. Flying robots cooperating in swarms could cover
large areas of surface and perform search and rescue operations
without human intervention [21], [20]. Acting autonomously
and in order to be able to reach the goal, such systems must
additionally take their energy consumption into consideration
[8]. The crucial point is that the energy of small aerial robots
depends on on-board batteries and therefore is finite and
unreliable [23]. The limited amount of battery power available
for flying is normally only 15-20 minutes [16]. The situation
getting worse when external perturbations arise, e.g. wind, as
they cause instability to the robots. Flying in windy conditions
is forcing the motors to work harder to neutralize the errors,
what leads to even faster battery loss. In this paper we focus
on the wastes of energy caused by the dynamics of the external
environment (such as wind, flow, bad weather conditions, etc.)
and propose a new PSO-based search mechanism for aerial
micro-robots, which could be further employed in robotic
search scenarios to extend the activity of the systems with
limited battery capacity.

In a previous work [2], we modeled the unknown dynamics
of the environment by using Vector Fields and developed a
new PSO-based approach called VFM-PSO, which can cope
with arising perturbations, despite incomplete awareness of the
corresponding vector fields structures. However, this approach
may not be practically beneficial in real aerial robotic search
applications, as it does not consider the amount of energy
required for moving to the next position. According to the
method proposed in [2], if the individuals get into the areas

with known (explored) perturbations they show resistance to
them by total neutralization of disturbance factor. This is good
in terms of optimization (search), as it behaves better then
as a baseline search algorithm. However, in terms of energy
consumption, such behavior is unprofitable/disadvantageous as
it needs a lot of effort especially in areas of inconvenient flows.
According to [2], while the area is unknown, the combined
movement of velocity vector calculated by standard PSO and
vector field at the according positions can also lead to over
speed-up or sharp turn of the robots. That might be very
dangerous, especially in strong winds with opposite directions,
and even cause damage of the robots. Since the robots coop-
erating in a swarm, the premature loss of individuals might
have an essential influence on the collective search process.
In this work, we aim to prevent that.

In this paper, different from our earlier work [2], the key
aspect is optimizing the energy consumption, and not just
the fitness landscape. To our best knowledge, this is the
first effort that addresses the issue of energy consumption of
aerial autonomous swarms in collective search process within
influence of external environment.

The main goal is to propose a model to estimate and mini-
mize additional energy costs arising in a swarm by the affects
of unknown external dynamics during the search process. The
unknown dynamics are modeled by Vector Fields and involves
the concept of Information Map, which stores the values of
the explored vector fields areas in a matrix as described in
[2]. We propose a new PSO-based search mechanism called
Navigation Wind PSO (NW-PSO) which let particles to decide
on their movements almost following the flow with small
course deviations in order to save as much energy as possible
to find the global optimum. We suppose that doing by this, the
robots will be better served by the battery and could be able
to accomplish the task within defined energy limits without
loss of individuals. The proposed approach uses the concepts
from multi-criteria decision making, where the individual
selects energy efficient target points using Pareto Front inside
the local neighborhood defined by its current vector fields
vector. Since the vector fields structures are unknown and
directly affect the choice, identification of the best target
point is presented by two models of multi-criteria decision
making depending on the Information Map. The main research



questions are to investigate in which vector fields in this case
the optimal solution could be found and how significant is
the role of information regarding surrounding vector field on
obtaining reasonable results under energy constraints. In the
experiments we analyze the emerged behavior under influence
of different vector fields and examine how the premature
energy-loss on individual level (of certain particles) affects
the performance of collective search. The results prove that
with NW-PSO we can save a good amount of energy as well
as perform search behavior with good approximation of the
global optimal solution almost without awareness regarding
disturbance factors and particles loss.

The remainder of this paper is structured as follows. We
describe the background and analyze some related works in
Section II. In Section III we propose our model. Section IV
presents the experiments and the results with some discussion.
The paper is concluded in Section V.

II. RELATED WORK AND BACKGROUND

Energy consumption of aerial micro-robots under external
influences in search scenarios has not been studied so far in
the literature. However, several researches concerning path and
task planning in dynamic environments were done in [24],
[22], [5], [18], [25], [1], proposing different approaches in
order to conserve energy such as: recharging optimization for
flight tour missions under the wind uncertainty [18]; the ability
of drones to fly at lower altitudes [25]; exploitation of wind
energy to extend the flight duration during the route from
a starting point to another [1], etc. Some other approaches
addressed the works in oceanic flows [6], [10], considering
construction of time- and energy-optimal paths to leverage
the dynamics of the surrounding flows within limited budgets
of energy for autonomous surface and underwater vehicles.
However, all of these studies do not consider collective search
process, i.e. optimization.

Stirling et al. in [17] introduced a novel energy-efficient
search strategy to coordinate flying robots in indoor environ-
ments, assuming that they can land or attach to ceilings. But
in scenarios with influence of external factors, in the case of
trapping into the areas of strong perturbations, it might be even
impossible for the robot to produce such sorts of behavior,
e.g. landing in high speed leads to damage of the robot; the
lack of points in a search space to stick to, etc. However,
the methodology proposed in this paper could deal with such
situations and is inspired by animal search and orientation
strategies with a lack of information about potential targets
in flows considered in [4], [12], [14], [19], [13] and uses the
concepts of PSO [7]. In [15] it was firstly introduced a PSO-
based search mechanism for aerial micro-robots, addressing
the question of efficient energy consumption for systems with
limited capacity, but it does not consider the influence of
external environment. This paper presents a first attempt to
cover the gap in research on energy saving swarm flights for
a collective search in environments with unknown external
dynamics, addressing the application of PSO. In [10] it was
concluded that velocity restriction plays sufficient role for

time, but not for energy. That approves one of the assump-
tions according velocity restriction of the presented model in
this work. Teppo et al. in [11] showed that if disturbances
are continuous, the benefit from temporary stabilization is
only momentary, so according to our model, taking into
consideration the perturbations arising in the next iteration
could improve the results of search. Since the decision on
the individuals movement to the next position is conditioned
on conflicting parameters, the selection is made based on
multi-criteria decision making technique from the set of so
called Pareto-optimal solutions. A solution ~x∗ is called Pareto-
optimal for minimization problems, if there is no other solution
~x′ in the search space S so that:
∀i : fi(~x

′) ≤ fi(~x∗) and ∃j : fj(~x
′) < fj(~x

∗).
Accordingly we can use the same definition to compare
the solutions. In this case, a solution ~x1 dominates another
solution ~x2 (denoted by ~x1 ≺ ~x2), if:
∀i : fi(~x1) ≤ fi(~x2) and ∃j : fj(~x1) < fj(~x2).

The solutions which do not mutually dominate each other are
called non-dominated solutions. In this paper selection of one
of the Pareto-optimal (or non-dominated) solutions is done
using the weighted sum method [9], which transforms multiple
conflicting objectives into an aggregated objective function by
multiplying each of the objective functions by a weighting
factor and summing up all weighted objective functions (as
shown in Section III-D).

III. METHODOLOGY

In this section, we introduce our new model which is
designed as navigation collective search based on concepts of
multi-criteria decision making for minimizing additional en-
ergy costs arising in aerial swarms under influence of unknown
external dynamics. The dynamics are modeled by vector fields
as in [2]. In order to verify the validity of proposed method,
we consider three strategies of aerial swarms behavior which
can be applied to cope with such dynamics during the search
process, i.e. complete compensation (denoted as C-PSO),
partial compensation (denoted as CW-PSO) and navigation
(denoted as NW-PSO, which is a new method proposed in
the paper). These approaches are based on the concepts of
Algorithm 1, which presents the general framework of [2]
with extension by our new model of energy costs described in
Section III-A.

The proposed mechanisms of search behavior are influ-
enced equally in their movements by vector fields but use
different strategies for treatment defined by ComputeVelocity()
(explained in Sections III-B and III-D). Energy calculation, i.e.
ComputeEnergy(), is the same for all swarms under external
dynamics influence and computed as follows:

A. Energy Computations

We assume that going in PSO-direction does not require any
effort in conditions of no wind (external influences). Since in
such conditions robots always use the same units of energy
per certain measurement (e.g. distance, time, etc.), we do not
consider these expenses in our proposed model of energy



Algorithm 1: General Framework

Input : Number of Np PSO individuals
t = 0
Initialize the PSO individuals:
for i = 1 to Np do

~xi(t) = StartPosition(S)
~vi(t) = 0
ebatteryi (t) = emax

end
while Stopping Criterion not fulfilled do

Wait for the Map from the Explorer Population:
Map = Receive(Map)
for i = 1 to Np do

~xg(t) = FindGlobalBest()
~vi(t+ 1) = ComputeVelocity (~xi(t), ~xg(t), Map)
~xi(t+ 1) = UpdatePosition(~vi(t), ~xi(t))
ebatteryi (t+ 1) = ComputeEnergy(~vi(t+ 1),
Map)

end
t = t+ 1

end

calculations. The attention is paid to the additional energy
wastes arising due non-uniform flows. In this case the values of
energy costs differ even within one and the same vector field,
depending on the value of magnitude and co-directionality
with desired direction of movement at current position. In
the following we introduce a simplified model of estimating
such energy costs for the individuals, which is modeled by
considering the required energy related to the definition of
total kinematic energy for rotation objects.

The energy of an individual is defined by the battery, i.e.
ebatteryi (t), which is full at the beginning and discharges
by moving and turning of the robot. The initial amount of
battery energy is the same for all individuals, i.e. emax. The
calculation of energy wastes for one individual is inspired
by total kinematic energy for rotation objects and performed
as the sum of rotational (i.e. the energy for turn, Erot) and
translation energy (i.e. the energy for movement, Etrans):

Ekinetic = Erot + Etrans (1)

The rotational energy eroti estimates how strong the particle
rotates in one iteration. eroti is defined by the angle (denoted
as ω) between the current velocity vector ~vi(t + 1) and the
old one ~vi(t), i.e. on previous iteration:

eroti (t+ 1) := ω = ∠(~vi(t+ 1), ~vi(t)) :=

:
def
= arccos

(
(~vi(t)), ~vi(t+ 1))

||~vi(t)|| · ||~vi(t+ 1)||

)
(2)

Where (·, ·) is the dot product (scalar product) of two
vectors; || · || denotes the length of a vector.

The translation energy etransi estimates how strong the parti-
cle needs to sheer away the current vector field and therefore
to spend energy for necessary movement correction. These
corrections are defined by the intensity of target movement
vector (denoted as I) and the angle (denoted as α) between
this vector and corresponding vector of the vector field at the
particles position. etransi is calculated as the sum of these two
parameters:

etransi (t+ 1) := I + α = (3)

= ||~vi(t+ 1)||+ ∠( ~V F (~xi(t)), ~vi(t+ 1)),

where ∠( ~V F (~xi(t)), ~vi(t+1)) is calculated by Equation(7).
To sum up, amount of wasted energy at one iteration step is
computed as:

Ekinetic = ω + I + α, (4)

where ω is the rotation angle; α is the steering control
angle; I is the magnitude of movement vector that indicates
the target direction; all the parameters are defined as above.

At the end of each iteration, the energy of individual, which
is available for the next movement, is evaluated as follows:

ebatteryi (t+ 1) = ebatteryi (t)− ekinetici (t+ 1), (5)

The individual stops the movement ~vi(t+ 1) = 0, i.e. dies,
when its battery is totally empty, i.e. ebatteryi (t) = 0.

The total energy of the whole swarm is evaluated by the
sum of all batteries values in entire population:

Etotal(t) =

Np∑
i=1

ebatteryi (t) (6)

In order to keep the model as simple as possible, we have
met several assumptions. In our model, we suggest that each
individual is equipped with velocity safety lock and can not
gain its speed in one iteration more than defined velocity
limit vmax. We assume that this action does not require any
additional energy costs.

B. Compensation

Full compensation behavior is presented by Compensative
PSO, i.e. C-PSO. C-PSO performs standard PSO (uses PSO
equations [7] for ComputeVelocity() and UpdatePosition()),
where particles move directly towards the current optimum
regardless of distractions caused by vector field as shown
in Fig.1(a). This can result in high energy wastes since the
particle moves in another direction than current predefined
vector of the vector field, e.g. high values of the steering
control angle α. Moreover, acting in unknown flows, such
behavior implies strong internal resistance, which is very
harmful for robot engines.

To deal with unknown disturbances, Compensative Wind
PSO, i.e. CW-PSO, uses explorer population gathering the
information about vector field in Information Map. Thus,
in explored areas particles could behave wisely and realize



their movement by a correction vector (which defines velocity
vector ~vi(t + 1)) as shown in Fig.1(b). As the result the
individual move to originally desired location. Such behavior
does not lead to the energy conservation in sense that the
resultant movement is the same as in C-PSO. But at the same
time, in non-aware areas high energy costs can be occasionally
reduced due to the redirections caused by the vector field and
particles own velocity as shown in Fig.1(c). In this way, energy
consumption of CW-PSO is supposed to a greater or lesser
extent depend on the Information Map. The strategy of CW-
PSO was already proposed in [2] as VFM-PSO, addressing
only the issue of convergence, and uses the same calculations
for ComputeVelocity() and UpdatePosition()).
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Fig. 1: Triangles of velocities with respect to the target
direction under vector field influence for C-PSO (a) and CW-
PSO: (b) - in explored area, (c) - in unexplored.

C. NW-PSO

In the following we introduce Navigation Wind PSO (i.e.
NW-PSO), based on general framework of Algorithm 1, which
contains in ComputeVelocity() the multi-criteria decision mak-
ing process for each individual in population.

The main goal of NW-PSO is to spend as less energy
as possible in order to find the global optimal solution.
Therefore, an individual i has to find such direction to go from
reachability set, i.e. ~xtarget ∈ R(~xi, ~V Fi), following which it
can be hit further by the vector field defined at target point,
i.e. ~V F tg = ~V F (~xtarget), to its primary goal ~xg . In such way,
the individual does not use its own energy to accelerate, so
it can save energy and at the same time get closer or even
reach the initial destination (as shown in Fig.2). The main
steps for selecting energy efficient target points, i.e. navigation
mechanism, are shown in Algorithm 2.

Primary goals ~xg(t) are calculated as the standard PSO-
vectors for each particle as in non-wind conditions. The first
step is to calculate the set of possible target points to go
for an individual i, which is defined by reachability set:
R(~xi, ~V F ) = {~xltarget}Nl=1. For this purpose we have to define
the search neighborhood: We assume that each individual
i is equipped with navigation sensors, so that it can look
for possible directions to go within sensors visibility range

Algorithm 2: Navigation for individual i

Input : ~xg(t), ~xi(t) and Map
Output : xtarget(t)
Initialize Neighborhood Ω:
Ω := Set(θ, k, θ∗)
Define Reachability Set:
count = 0
for l = 1 to N do

~xltarget(t) := ComputeTargets( ~V Fi, Ω)
if Map(~xltarget(t)) 6= 0 then

count = count+ 1
end

end
Par(i) := EnergyProfit (count, ~xi(t), ~xg(t))
xtarget(t) = MCDM (Par(i))

Ω(θ, r, k) (denoted as grey semicircle in Fig.2), defined by
the angle range θ (in degrees), search radius r and precision
of search k.

Goal 𝑥 𝑔 

Target 𝑥 𝑡𝑎𝑟𝑔𝑒𝑡 

 
Movement 

𝑑 

𝛼 

𝛽 

𝑥 𝑖 

Fig. 2: Scenario 1: Navigation using Information Map. Grey
semicircle defines the search neighborhood Ω(θ, r, k). The
points on the border of semicircle, denoted according to the
precision k as white targets ~xltarget, form the reachability set
R(~xi, ~V F ). Painted-over cells define explored areas.

The angle range θ determines the rotation possibility of the
individual according to the direction of the current flow. It is
symmetric about the vector ~V Fi as shown in Fig.2 and defines
the maximum course deviation from it. The direction of ~V Fi
defines zero reference. The smaller range means the higher co-
directionality with ~V Fi and as the result less energy wastes.
The search radius is defined by the norm of the current flow,
i.e. r = || ~V Fi||. Given that the particle can only move with a
limited velocity, in case if || ~V Fi|| > vmax, the search radius r
is set to vmax. The number of directions to go, i.e. N , within
the angle range is defined by precision k (k ∈ N>0), which
means that every kth vector from the angle range could be
chosen as a possibility for movement, i.e. N = θ

k . So the
set of target points for an individual i, i.e. reachability set, is
defined as follows:



R(~xi, ~V F ) = {~xltarget ∈ Ω(r, θ, k) : (7)

||~xltarget − ~xi|| = r, 1 ≤ l ≤ θ

k
}

In case, if the primary goal occurs inside the visibility range
(the particle is already close to the goal), we increase the angle
range for this individual, i.e. θ∗ >> θ, and set the search
radius r to the Euclidean distance value between position of
the individual and the global best. As a result the swarm can
really converge, if it is close to the optimum:

(r, θ) =

{
(vmax, θ), if || ~V Fi|| > vmax

(dist(~xg(t), ~xi(t)), θ
∗), if ||~xg(t)− ~xi(t)|| ≤ r

D. Navigation Decision Making

In order to select the best target point to go, the individual
computes the energy profit for each targets candidate, which
depends on the Information Map. The position of each target
point is checked in the Information Map, whether it is in
explored area or not, i.e. Map(~xltarget) 6= 0. EnergyProfit()
determines the set of parameters, which will be used in multi-
criteria decision making, i.e. MCDM(). According to the values
of Information Map, there are 2 scenarios for EnergyProfit()
calculations:

Scenario 1. If card(R(~xi, ~V F )∩Map) ≥ N/2, then the En-
ergyProfit() for candidate solutions is defined by the parameter
set: (α, β, d) as shown in Fig.2.

Where α is the angle between target vector and the current
vector field ~V Fi; β is the angle between vector flow from
the corresponding target point ~V Ftg and the direction from
~xtarget to ~xg; d is the Euclidean distance between the head of
~V Ftg and ~xg . The calculations of angles are made using the

same definition as in Equation 2 Section III-A.
Since the calculations of parameters β and d depend on the

Information Map, i.e. use the a priori unknown values of the
vector field at target points, the amount of candidate solutions
N for this case is defined only by the target points which get
into explored areas, i.e. card(R(~xi, ~V F ) ∩Map 6= ∅).

Scenario 2. If card(R(~xi, ~V F )∩Map) < N/2, then then the
EnergyProfit() is defined only by: (α, d) as shown in Fig.3.

In this case the calculations of the parameters, i.e. α and
d, do not depend on the Information Map. Since α is defined
by the current flow ~V Fi, which particle can estimate (but not
save) despite Information Map, and d is the Euclidean distance
between target candidate point ~xltarget and ~xg . α is calculated
the same as in Scenario 1. The amount of candidate solutions
N in this case is defined by all possible target points which
can be obtained with given precision k and angle range θ as
was described in Section III-C .

We consider these two scenarios, because in case if there
are too few explored areas in the visibility range (as in
Scenario 2), the results with parameters defined by Scenario
1 might be misleading, e.g. explored area is only in non

Goal	𝑥⃗#

Target	𝑥⃗$%&#'$

𝛼𝑥⃗)

𝑑

Fig. 3: Scenario 2: Navigation without Information Map.

energy efficient direction (high α values). However, regardless
of the scenario all the parameters are in conflict with each
other; the candidates with low energy costs (small α values)
can be far away from goal ~xg and prevent convergence. In
this case, the individuals must select one of the N candidate
solutions ~xltarget, 1 ≤ l ≤ N , using concepts from multi-
criteria decision making (denoted as MCDM () in Algorithm
2). All the parameters (α, β, d) are normalized and the best
target point ~xtarget is evaluated by the weighted sum approach
as follows:

Each target point l of the individual i is assigned with
a weight vector for the parameters according to the current
scenario for this individual i: w1 = (w1

α, w
1
β , w

1
d), w

2 =
(w2

α, w
2
d), where ||w1||, ||w2|| = 1. The weight of each

parameter shows its priority. In this paper the values for
weights w1, w2 are selected constant by the experiments for
all individuals and differs only within vector fields. The table
with weights values is provided in Section IV (i.e. Table II)
according to the vector fields considered in this paper. After
setting the preferences (i.e. parameters and weights according
to the arose scenario) for each possible target point l, the profit
of each candidate ranks by:

Profit(l) =

{
w1
α · α+ w1

β · β + w1
d · d, if Scenario1

w2
α · α+ w2

d · d, if Scenario2

Where l = 1, · · · , N . The target l with the lowest profit will
be selected as the most profitable, i.e. the best target ~xtarget,
by the individual i. Then the individual movement vector in
ComputeVelocity() of Algorithm 1 is calculated as follows:

~vi(t+ 1) =

{
~xtarget(t)− ~xi(t) + ~V F tg, if Scenario1
~xtarget(t)− ~xi(t), if Scenario2

However, only the velocity vector for target position (as in
Scenario 2) is used for calculating energy costs ComputeEn-
ergy() in Algorithm 1 regardless of the scenario type.



IV. EXPERIMENTS

A. Parameter Settings

In the experiments we compare three different algorithms
described in Section III, C-PSO, CW-PSO and NW-PSO, all
of which illustrate the proposed methods in this paper. All
the algorithms use the same model of energy computations
described in Section III-A and the same initial battery capac-
ity emax for all individuals. The algorithms parameters are
selected as in Table I. Inertia weight w = 0.6 and acceleration
coefficients C1 = C2 = 1 are set according to our extensive
preliminary tests. The optimization stops after 100 iteration.

TABLE I: Parameter values

Parameter Value
Population size Np 30

Number of explorers Ne 20
Velocity limit vmax 2

Battery capacity emax 100
Angle range θ 90◦

Angle extension θ∗ 150◦

Precision k 2

The flights are modeled in d = 2 dimensional search space.
Np aerial robots are placed with random positions in search
area (arena) defined as x1, x2 ∈ [−15, 15]. Three test problems
such as Sphere, Ackley and Rosenbrock from the literature are
used for the experiments. These test problems can very well
simulate natural search terrains, i.e. while Sphere is for the
simple tests, Ackley and Rosenbrock capture terrains with lots
of local optima and a flat plateau respectively. The optimal
solution of all these problems is shifted to (−10, 10). The
value of the optimal solution is the same as for standard test
problems, i.e. equals zero. In the experiments 5 various vector
fields (denoted by VF1 to VF5 in Table II) are used to model
the external dynamics defined on the mesh of 31×31 units of
the search space. VF1 to VF3 were already considered in [2],
while VF4, defined as ~V F4(x1, x2) = (−0.7y, 0), and VF5,
defined by random values rand(−1, 1), are the new ones.

TABLE II: Preference values in decision-making process for
five vector fields according to the Scenario.

Scenario 1 Scenario 2

w1
α w1

d w1
β w2

α w2
d

VF1: “Cross” 0.8 0.15 0.05 0.75 0.25
VF2: “Rotation” 0.8 0.19 0.01 0.7 0.3
VF3: “Sheared” 0.75 0.15 0.1 0.7 0.3
VF4: “Bi-directional” 0.1 0.2 0.7 0.6 0.4
VF5: “Random” 0.5 0.2 0.3 0.7 0.3

The results are compared in terms of fitness (best function
values obtained during the all iterations), the total swarm
energy (calculated by Equation 6), success and survival rate.
The success rate indicates the percentage of runs, in which
fitness is smaller than a certain threshold (e.g., 0.01) by the
end of the search process, while the survival rate shows the
ratio (in percentage) of the particles which are still full of
energy, i.e. ebatteryi 6= 0, by the end of the iterations. All the

TABLE III: Results for the three test problems in five vector
fields (median values and standard errors (std)). “Energy” and
“fitness” indicate the total amount of energy and the best
function value obtained by the swarm. Bold values indicate
the best fitness value (i.e. convergence) and the corresponding
energy wastes.

energy ±std fitness ±std
Sphere

VF1
NW- 545,532 25,188 3,132 0,727
CW- 2501,371 26,752 5,711 0,781
C- 3000,000 0,000 0,000 0,000

VF2
NW- 1268,953 27,494 0,002 0,001
CW- 2990,401 2,429 0,380 0,129
C- 3000,000 0,000 0,000 0,000

VF3
NW- 556,342 13,429 0,186 0,055
CW- 1165,756 28,306 1,361 0,157
C- 3000,000 0,000 0,000 0,000

VF4
NW- 618,595 21,093 0,005 0,002
CW- 1598,155 112,187 0,070 0,007
C- 3000,000 0,000 0,000 0,000

VF5
NW- 2424,924 16,623 0,000 0,000
CW- 3000,00 0,00 0,001 0,000
C- 3000,000 0,000 0,000 0,000

Rosenbrock

VF1
NW- 518,321 18,216 178,801 65,811
CW- 2542,374 26,559 395,208 91,004
C- 3000,000 0,000 0,002 0,002

VF2
NW- 1299,938 21,839 0,074 0,013
CW- 2968,305 5,923 27,293 11,098
C- 2999,750 0,240 0,003 0,001

VF3
NW- 757,959 28,640 2,147 0,315
CW- 1207,998 31,455 178,021 173,392
C- 2999,206 0,326 0,004 0,004

VF4
NW- 541,178 15,989 0,606 0,106
CW- 2597,197 45,318 1,989 0,416
C- 3000,000 0,000 0,001 0,001

VF5
NW- 2440,865 15,906 0,221 0,084
CW- 3000,000 0,000 0,016 0,002
C- 3000,000 0,000 0,001 0,000

Ackley

VF1
NW- 603,961 22,072 3,714 0,384
CW- 2501,210 28,404 6,141 0,297
C- 3000,000 0,000 0,000 0,000

VF2
NW- 1232,115 25,596 0,101 0,027
CW- 2987,347 3,078 1,252 0,182
C- 3000,000 0,000 0,000 0,000

VF3
NW- 659,721 17,090 2,014 0,228
CW- 1140,529 27,352 4,225 0,118
C- 3000,000 0,000 0,000 0,000

VF4
NW- 631,198 20,776 0,519 0,087
CW- 1483,747 108,136 1,612 0,108
C- 3000,000 0,000 0,000 0,000

VF5
NW- 2455,187 14,300 0,091 0,036
CW- 3000,000 0,000 0,080 0,005
C- 3000,000 0,000 0,000 0,000

experiments are run for 100 times and the median values and
the corresponding standard errors are reported in Table III.

B. Results

Table III shows the results obtained during 100 iterations.
In all of the experiments C-PSO delivers the best fitness
values (i.e. good convergence) as it behaves like standard
PSO. However, the results for energy are the worst among the
others as all individuals are run out of batteries by the end of
iterations. This is caused by small movements which are made
in the swarm after they have found needed global best until



they do not really converge to one point, i.e. velocity set to
zero. Due to the arising perturbations from vector fields, these
small movements take a lot of effort in terms of compensative
behavior of C-PSO. Since the maximum total amount of
energy is used, i.e. Etotal = 3000, we do not consider C-PSO
in further analysis. Considering NW-PSO in terms of energy,
we observe the best results among the others approaches as
expected regardless the structure either of vector field or the
search terrain. Considering NW-PSO and the shifted Sphere
function, we observe the lowest energy wastes in VF1, VF3,
VF4, while in VF2 and VF5 we get the highest ones (i.e. the
whole swarm is run out of energy). For the shifted Rosenbrock,
the results are a bit different: in VF1,VF4,VF3 the swarm
spend almost the same lowest amount of energy which follows
by higher expenses (but not the greatest possible) in VF2 and
VF5. The order for the Ackley is the same as for Rosenbrock
function. The results for CW-PSO energy wastes are always
higher than for NW-PSO and have a different order: VF3, VF4,
VF1, VF2 and VF5, which is the same for Sphere and Ackley
with slight difference for Rosenbrock, i.e. in Rosenbrock VF1
is before VF4.

Vector fields VF2 and VF5 are battery expensive for both
approaches. This can be justified by high fitness values of
both in Table III and success rate in Table IV for all three
search terrains. Low energy wastes in VF1, i.e. “Cross”, for
NW-PSO are caused by its difficult structure (described in
[2]). Since particles are trying to follow the flow which blows
them away to the corners of the search space, as the result
the search process is totally misleading by navigation. So still
only by luck the particles, which are initialized at up-right
corner, could be pushed by the flow towards the solution, but
afterwards again blown away since navigation behavior. That
confirms the reasonable good values of success rate in Table
IV, but bad fitness values for VF1 in Table III.

Vector field VF4, so called ”Bi-directional”, is in the middle
rank of energy wastes for both NW- and CW-PSO regardless
the considered objective functions and indicates reasonable
good results as well as for fitness and success rates. The reason
consists in the vector fields structure, i.e. in the middle it has
a non wind band area symmetrical to which we consider an
uniform flow in different directions (to the left side upside the
band zone, i.e. towards the solution, and to the right - downside
the band). According to this, particles are tend to be pushed
to the search borders from which, due to the small random
movements, they can escape to non wind area, from where
they are already able to correct their course again towards the
optimum.

Referring to Table III, for the Ackley it is still very difficult
to accomplish the goal as the particles are more often occurred
to visit multiple local optima. However, due to the vary
continuous redirections, i.e. as chaotic in VF5 and repeating
circulation in VF2, the individuals are constantly kicked by
the vector field during the navigation process that allows them
not to be trapped in bad search areas, i.e. show the trend to
converge. The energy costs in this case are in the range of
middle values.

TABLE IV: Average values of Success and Survival Rate
for NW-PSO, CW-PSO and C-PSO. DARK GRAY indicates
high values, i.e. ≥ 50%. LIGHT GRAY indicates low values
in the range of [15%, 50%).

Sphere Rosenbrock Ackley
success alive success alive success alive

VF1
NW- 51% 95% 10% 96% 27% 96%
CW- 1% 51% 0% 44% 0% 49%
C- 99% 0% 98% 0% 99% 0%

VF2
NW- 93% 94% 39% 96% 49% 96%
CW- 48% 4% 17% 12% 25% 5%
C- 99% 0% 94% 0% 99% 0%

VF3
NW- 60% 96% 7% 87% 18% 94%
CW- 1% 99% 0% 97% 0% 99%
C- 99% 0% 97% 0% 99% 0%

VF4
NW- 90% 100% 15% 100% 25% 100%
CW- 19% 61% 1% 36% 1% 66%
C- 99% 0% 97% 0% 99% 0%

VF5
NW- 99% 52% 20% 52% 75% 51%
CW- 100% 0% 51% 0% 0% 0%
C- 99% 0% 97% 0% 99% 0%

The obtained results reveal that proposed model of energy
computations is correct, i.e. the individuals arrange their move-
ment relying on the vector field, and that NW-PSO can find
valid approximation of the global optimum with low energy
wastes relative to the other considered above approaches.
Energy costs vary only within vector fields structures and do
not depend on the search terrain. Although, in order to get
good convergence performance, reasonable expenses are still
needed.

C. Analysis of Survival Rate

In this section we want to investigate how individual loss of
particles influences the collective search. Table IV summarizes
the average values of Survival Rate (denoted as alive) and
Success Rate (denoted as success) in percentage for each
algorithm by the end of iterations among 100 runs. From this
table it can be seen that in NW-PSO, as expected, a very small
amount of particles run out of energy independent on either the
search landscape or the vector field. For NW-PSO we observe
high alive values, i.e. almost more than 95%. The exception
is only vector field VF5 (so-called ”Random”), where about
the half of population is recharged by the end of the search.
Nevertheless, the success rate in this vector field is the highest
among the others. Especially for the shifted Ackley function
in VF5 we observe 75% of successful runs, which is the
best obtained value along with survival of 51% among the
considered vector fields.

While the Survival Rate does not vary much among vector
fields (as the main goal of NW-PSO is to save energy), the
Success Rate differs between both the vector fields structures
and objective functions. For Sphere by NW-PSO we always
obtain high values of success despite the vector field, while
results for Rosenbrock are very low. The reason is that while
trapping into the area of flat plateau during the navigation
process, the particles in that region mostly go directly with
the corresponding flow without almost any corrections for the
search. So only those individuals, which by occasion follow



profitable for search directions, pass through the optimum. The
results of Success Rate for Ackley are also low, but higher than
for Rosenbrock. This is because NW-PSO particles never stop
their movement (i.e. do not run off energy), so they are always
blown away from the local optima no matter as frequent they
are trapped by them. The results for CW-PSO present very
few values of Success Rate suitable for consideration, while
those which indicate at least low values go along with almost
0% Survival Rate. At the same time 0% Survival Rate of C-
PSO by the end of iterations with almost 100% Success Rate
reveals that the particles accomplish the task already before the
first loss is occurred. From this we deduce, that the premature
loss of certain individuals destroys essential for the search
connections between the others (like the same problem as re-
initialization of the population after dynamic change [3]). The
another issue is that CW-PSO behavior highly depends on the
Information Map, while NW-PSO could deal well in unknown
environment as it navigates mostly according to the current
position.

V. CONCLUSION AND FUTURE WORK

In this paper we presented Navigation Wind PSO (NW-
PSO) method as a search mechanism under energy constraints
for aerial swarms acting in environments with unknown per-
turbations modeled by vector fields. The main idea of the
paper is motivated by a real case scenario of an aerial micro-
robotic swarm with limited battery capacity. The proposed
model and the corresponding features are meant to provide an
algorithmic design to estimate effects of the external unknown
dynamics on energy consumption of the aerial swarm during
the search process. The presented experiments were made to
provide a baseline for further realistic tests. The analysis reveal
that the proposed model of energy computations is correct
and according to it the individuals of NW-PSO can arrange
their movements relying on the vector field and thereby save
the energy. Provided that NW-PSO always outperforms CW-
PSO in energy conservation along with optimization of the
fitness landscape, i.e. it was justified that in most of the
cases NW-PSO can also find good approximation of the global
optimal solution which is better than this one found by CW-
PSO. Moreover, NW-PSO prevents the premature particle loss,
which as was shown has a very large impact on the mechanism
of search. According to the obtained results, it is very sufficient
to find a balance between energy conservation and search
mechanism which depends on either the search landscape or
vector field structure. Further research will be needed in order
to determine how the individuals have to switch between the
behavioral strategies in order to accomplish the task as efficient
as possible under the corresponding conditions. This will
provide the basis for derivation of profitable for search vector
fields structures under unknown conditions. As the part of the
future work, also deeper statistical analysis of the difference
in performance between particles behavior will be held.
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